12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312 |
- /*
- * mm/percpu.c - percpu memory allocator
- *
- * Copyright (C) 2009 SUSE Linux Products GmbH
- * Copyright (C) 2009 Tejun Heo <[email protected]>
- *
- * This file is released under the GPLv2.
- *
- * This is percpu allocator which can handle both static and dynamic
- * areas. Percpu areas are allocated in chunks. Each chunk is
- * consisted of boot-time determined number of units and the first
- * chunk is used for static percpu variables in the kernel image
- * (special boot time alloc/init handling necessary as these areas
- * need to be brought up before allocation services are running).
- * Unit grows as necessary and all units grow or shrink in unison.
- * When a chunk is filled up, another chunk is allocated.
- *
- * c0 c1 c2
- * ------------------- ------------------- ------------
- * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
- * ------------------- ...... ------------------- .... ------------
- *
- * Allocation is done in offset-size areas of single unit space. Ie,
- * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
- * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
- * cpus. On NUMA, the mapping can be non-linear and even sparse.
- * Percpu access can be done by configuring percpu base registers
- * according to cpu to unit mapping and pcpu_unit_size.
- *
- * There are usually many small percpu allocations many of them being
- * as small as 4 bytes. The allocator organizes chunks into lists
- * according to free size and tries to allocate from the fullest one.
- * Each chunk keeps the maximum contiguous area size hint which is
- * guaranteed to be equal to or larger than the maximum contiguous
- * area in the chunk. This helps the allocator not to iterate the
- * chunk maps unnecessarily.
- *
- * Allocation state in each chunk is kept using an array of integers
- * on chunk->map. A positive value in the map represents a free
- * region and negative allocated. Allocation inside a chunk is done
- * by scanning this map sequentially and serving the first matching
- * entry. This is mostly copied from the percpu_modalloc() allocator.
- * Chunks can be determined from the address using the index field
- * in the page struct. The index field contains a pointer to the chunk.
- *
- * To use this allocator, arch code should do the followings.
- *
- * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
- * regular address to percpu pointer and back if they need to be
- * different from the default
- *
- * - use pcpu_setup_first_chunk() during percpu area initialization to
- * setup the first chunk containing the kernel static percpu area
- */
- #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
- #include <linux/bitmap.h>
- #include <linux/bootmem.h>
- #include <linux/err.h>
- #include <linux/list.h>
- #include <linux/log2.h>
- #include <linux/mm.h>
- #include <linux/module.h>
- #include <linux/mutex.h>
- #include <linux/percpu.h>
- #include <linux/pfn.h>
- #include <linux/slab.h>
- #include <linux/spinlock.h>
- #include <linux/vmalloc.h>
- #include <linux/workqueue.h>
- #include <linux/kmemleak.h>
- #include <linux/sched.h>
- #include <asm/cacheflush.h>
- #include <asm/sections.h>
- #include <asm/tlbflush.h>
- #include <asm/io.h>
- #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
- #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
- #define PCPU_ATOMIC_MAP_MARGIN_LOW 32
- #define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
- #define PCPU_EMPTY_POP_PAGES_LOW 2
- #define PCPU_EMPTY_POP_PAGES_HIGH 4
- #ifdef CONFIG_SMP
- /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
- #ifndef __addr_to_pcpu_ptr
- #define __addr_to_pcpu_ptr(addr) \
- (void __percpu *)((unsigned long)(addr) - \
- (unsigned long)pcpu_base_addr + \
- (unsigned long)__per_cpu_start)
- #endif
- #ifndef __pcpu_ptr_to_addr
- #define __pcpu_ptr_to_addr(ptr) \
- (void __force *)((unsigned long)(ptr) + \
- (unsigned long)pcpu_base_addr - \
- (unsigned long)__per_cpu_start)
- #endif
- #else /* CONFIG_SMP */
- /* on UP, it's always identity mapped */
- #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
- #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
- #endif /* CONFIG_SMP */
- struct pcpu_chunk {
- struct list_head list; /* linked to pcpu_slot lists */
- int free_size; /* free bytes in the chunk */
- int contig_hint; /* max contiguous size hint */
- void *base_addr; /* base address of this chunk */
- int map_used; /* # of map entries used before the sentry */
- int map_alloc; /* # of map entries allocated */
- int *map; /* allocation map */
- struct list_head map_extend_list;/* on pcpu_map_extend_chunks */
- void *data; /* chunk data */
- int first_free; /* no free below this */
- bool immutable; /* no [de]population allowed */
- int nr_populated; /* # of populated pages */
- unsigned long populated[]; /* populated bitmap */
- };
- static int pcpu_unit_pages __read_mostly;
- static int pcpu_unit_size __read_mostly;
- static int pcpu_nr_units __read_mostly;
- static int pcpu_atom_size __read_mostly;
- static int pcpu_nr_slots __read_mostly;
- static size_t pcpu_chunk_struct_size __read_mostly;
- /* cpus with the lowest and highest unit addresses */
- static unsigned int pcpu_low_unit_cpu __read_mostly;
- static unsigned int pcpu_high_unit_cpu __read_mostly;
- /* the address of the first chunk which starts with the kernel static area */
- void *pcpu_base_addr __read_mostly;
- EXPORT_SYMBOL_GPL(pcpu_base_addr);
- static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
- const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
- /* group information, used for vm allocation */
- static int pcpu_nr_groups __read_mostly;
- static const unsigned long *pcpu_group_offsets __read_mostly;
- static const size_t *pcpu_group_sizes __read_mostly;
- /*
- * The first chunk which always exists. Note that unlike other
- * chunks, this one can be allocated and mapped in several different
- * ways and thus often doesn't live in the vmalloc area.
- */
- static struct pcpu_chunk *pcpu_first_chunk;
- /*
- * Optional reserved chunk. This chunk reserves part of the first
- * chunk and serves it for reserved allocations. The amount of
- * reserved offset is in pcpu_reserved_chunk_limit. When reserved
- * area doesn't exist, the following variables contain NULL and 0
- * respectively.
- */
- static struct pcpu_chunk *pcpu_reserved_chunk;
- static int pcpu_reserved_chunk_limit;
- static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
- static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
- static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
- /* chunks which need their map areas extended, protected by pcpu_lock */
- static LIST_HEAD(pcpu_map_extend_chunks);
- /*
- * The number of empty populated pages, protected by pcpu_lock. The
- * reserved chunk doesn't contribute to the count.
- */
- static int pcpu_nr_empty_pop_pages;
- /*
- * Balance work is used to populate or destroy chunks asynchronously. We
- * try to keep the number of populated free pages between
- * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
- * empty chunk.
- */
- static void pcpu_balance_workfn(struct work_struct *work);
- static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
- static bool pcpu_async_enabled __read_mostly;
- static bool pcpu_atomic_alloc_failed;
- static void pcpu_schedule_balance_work(void)
- {
- if (pcpu_async_enabled)
- schedule_work(&pcpu_balance_work);
- }
- static bool pcpu_addr_in_first_chunk(void *addr)
- {
- void *first_start = pcpu_first_chunk->base_addr;
- return addr >= first_start && addr < first_start + pcpu_unit_size;
- }
- static bool pcpu_addr_in_reserved_chunk(void *addr)
- {
- void *first_start = pcpu_first_chunk->base_addr;
- return addr >= first_start &&
- addr < first_start + pcpu_reserved_chunk_limit;
- }
- static int __pcpu_size_to_slot(int size)
- {
- int highbit = fls(size); /* size is in bytes */
- return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
- }
- static int pcpu_size_to_slot(int size)
- {
- if (size == pcpu_unit_size)
- return pcpu_nr_slots - 1;
- return __pcpu_size_to_slot(size);
- }
- static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
- {
- if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
- return 0;
- return pcpu_size_to_slot(chunk->free_size);
- }
- /* set the pointer to a chunk in a page struct */
- static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
- {
- page->index = (unsigned long)pcpu;
- }
- /* obtain pointer to a chunk from a page struct */
- static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
- {
- return (struct pcpu_chunk *)page->index;
- }
- static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
- {
- return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
- }
- static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
- unsigned int cpu, int page_idx)
- {
- return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
- (page_idx << PAGE_SHIFT);
- }
- static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
- int *rs, int *re, int end)
- {
- *rs = find_next_zero_bit(chunk->populated, end, *rs);
- *re = find_next_bit(chunk->populated, end, *rs + 1);
- }
- static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
- int *rs, int *re, int end)
- {
- *rs = find_next_bit(chunk->populated, end, *rs);
- *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
- }
- /*
- * (Un)populated page region iterators. Iterate over (un)populated
- * page regions between @start and @end in @chunk. @rs and @re should
- * be integer variables and will be set to start and end page index of
- * the current region.
- */
- #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
- for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
- (rs) < (re); \
- (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
- #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
- for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
- (rs) < (re); \
- (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
- /**
- * pcpu_mem_zalloc - allocate memory
- * @size: bytes to allocate
- *
- * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
- * kzalloc() is used; otherwise, vzalloc() is used. The returned
- * memory is always zeroed.
- *
- * CONTEXT:
- * Does GFP_KERNEL allocation.
- *
- * RETURNS:
- * Pointer to the allocated area on success, NULL on failure.
- */
- static void *pcpu_mem_zalloc(size_t size)
- {
- if (WARN_ON_ONCE(!slab_is_available()))
- return NULL;
- if (size <= PAGE_SIZE)
- return kzalloc(size, GFP_KERNEL);
- else
- return vzalloc(size);
- }
- /**
- * pcpu_mem_free - free memory
- * @ptr: memory to free
- *
- * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
- */
- static void pcpu_mem_free(void *ptr)
- {
- kvfree(ptr);
- }
- /**
- * pcpu_count_occupied_pages - count the number of pages an area occupies
- * @chunk: chunk of interest
- * @i: index of the area in question
- *
- * Count the number of pages chunk's @i'th area occupies. When the area's
- * start and/or end address isn't aligned to page boundary, the straddled
- * page is included in the count iff the rest of the page is free.
- */
- static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
- {
- int off = chunk->map[i] & ~1;
- int end = chunk->map[i + 1] & ~1;
- if (!PAGE_ALIGNED(off) && i > 0) {
- int prev = chunk->map[i - 1];
- if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
- off = round_down(off, PAGE_SIZE);
- }
- if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
- int next = chunk->map[i + 1];
- int nend = chunk->map[i + 2] & ~1;
- if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
- end = round_up(end, PAGE_SIZE);
- }
- return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
- }
- /**
- * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
- * @chunk: chunk of interest
- * @oslot: the previous slot it was on
- *
- * This function is called after an allocation or free changed @chunk.
- * New slot according to the changed state is determined and @chunk is
- * moved to the slot. Note that the reserved chunk is never put on
- * chunk slots.
- *
- * CONTEXT:
- * pcpu_lock.
- */
- static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
- {
- int nslot = pcpu_chunk_slot(chunk);
- if (chunk != pcpu_reserved_chunk && oslot != nslot) {
- if (oslot < nslot)
- list_move(&chunk->list, &pcpu_slot[nslot]);
- else
- list_move_tail(&chunk->list, &pcpu_slot[nslot]);
- }
- }
- /**
- * pcpu_need_to_extend - determine whether chunk area map needs to be extended
- * @chunk: chunk of interest
- * @is_atomic: the allocation context
- *
- * Determine whether area map of @chunk needs to be extended. If
- * @is_atomic, only the amount necessary for a new allocation is
- * considered; however, async extension is scheduled if the left amount is
- * low. If !@is_atomic, it aims for more empty space. Combined, this
- * ensures that the map is likely to have enough available space to
- * accomodate atomic allocations which can't extend maps directly.
- *
- * CONTEXT:
- * pcpu_lock.
- *
- * RETURNS:
- * New target map allocation length if extension is necessary, 0
- * otherwise.
- */
- static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
- {
- int margin, new_alloc;
- lockdep_assert_held(&pcpu_lock);
- if (is_atomic) {
- margin = 3;
- if (chunk->map_alloc <
- chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
- if (list_empty(&chunk->map_extend_list)) {
- list_add_tail(&chunk->map_extend_list,
- &pcpu_map_extend_chunks);
- pcpu_schedule_balance_work();
- }
- }
- } else {
- margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
- }
- if (chunk->map_alloc >= chunk->map_used + margin)
- return 0;
- new_alloc = PCPU_DFL_MAP_ALLOC;
- while (new_alloc < chunk->map_used + margin)
- new_alloc *= 2;
- return new_alloc;
- }
- /**
- * pcpu_extend_area_map - extend area map of a chunk
- * @chunk: chunk of interest
- * @new_alloc: new target allocation length of the area map
- *
- * Extend area map of @chunk to have @new_alloc entries.
- *
- * CONTEXT:
- * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
- *
- * RETURNS:
- * 0 on success, -errno on failure.
- */
- static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
- {
- int *old = NULL, *new = NULL;
- size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
- unsigned long flags;
- lockdep_assert_held(&pcpu_alloc_mutex);
- new = pcpu_mem_zalloc(new_size);
- if (!new)
- return -ENOMEM;
- /* acquire pcpu_lock and switch to new area map */
- spin_lock_irqsave(&pcpu_lock, flags);
- if (new_alloc <= chunk->map_alloc)
- goto out_unlock;
- old_size = chunk->map_alloc * sizeof(chunk->map[0]);
- old = chunk->map;
- memcpy(new, old, old_size);
- chunk->map_alloc = new_alloc;
- chunk->map = new;
- new = NULL;
- out_unlock:
- spin_unlock_irqrestore(&pcpu_lock, flags);
- /*
- * pcpu_mem_free() might end up calling vfree() which uses
- * IRQ-unsafe lock and thus can't be called under pcpu_lock.
- */
- pcpu_mem_free(old);
- pcpu_mem_free(new);
- return 0;
- }
- /**
- * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
- * @chunk: chunk the candidate area belongs to
- * @off: the offset to the start of the candidate area
- * @this_size: the size of the candidate area
- * @size: the size of the target allocation
- * @align: the alignment of the target allocation
- * @pop_only: only allocate from already populated region
- *
- * We're trying to allocate @size bytes aligned at @align. @chunk's area
- * at @off sized @this_size is a candidate. This function determines
- * whether the target allocation fits in the candidate area and returns the
- * number of bytes to pad after @off. If the target area doesn't fit, -1
- * is returned.
- *
- * If @pop_only is %true, this function only considers the already
- * populated part of the candidate area.
- */
- static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
- int size, int align, bool pop_only)
- {
- int cand_off = off;
- while (true) {
- int head = ALIGN(cand_off, align) - off;
- int page_start, page_end, rs, re;
- if (this_size < head + size)
- return -1;
- if (!pop_only)
- return head;
- /*
- * If the first unpopulated page is beyond the end of the
- * allocation, the whole allocation is populated;
- * otherwise, retry from the end of the unpopulated area.
- */
- page_start = PFN_DOWN(head + off);
- page_end = PFN_UP(head + off + size);
- rs = page_start;
- pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
- if (rs >= page_end)
- return head;
- cand_off = re * PAGE_SIZE;
- }
- }
- /**
- * pcpu_alloc_area - allocate area from a pcpu_chunk
- * @chunk: chunk of interest
- * @size: wanted size in bytes
- * @align: wanted align
- * @pop_only: allocate only from the populated area
- * @occ_pages_p: out param for the number of pages the area occupies
- *
- * Try to allocate @size bytes area aligned at @align from @chunk.
- * Note that this function only allocates the offset. It doesn't
- * populate or map the area.
- *
- * @chunk->map must have at least two free slots.
- *
- * CONTEXT:
- * pcpu_lock.
- *
- * RETURNS:
- * Allocated offset in @chunk on success, -1 if no matching area is
- * found.
- */
- static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
- bool pop_only, int *occ_pages_p)
- {
- int oslot = pcpu_chunk_slot(chunk);
- int max_contig = 0;
- int i, off;
- bool seen_free = false;
- int *p;
- for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
- int head, tail;
- int this_size;
- off = *p;
- if (off & 1)
- continue;
- this_size = (p[1] & ~1) - off;
- head = pcpu_fit_in_area(chunk, off, this_size, size, align,
- pop_only);
- if (head < 0) {
- if (!seen_free) {
- chunk->first_free = i;
- seen_free = true;
- }
- max_contig = max(this_size, max_contig);
- continue;
- }
- /*
- * If head is small or the previous block is free,
- * merge'em. Note that 'small' is defined as smaller
- * than sizeof(int), which is very small but isn't too
- * uncommon for percpu allocations.
- */
- if (head && (head < sizeof(int) || !(p[-1] & 1))) {
- *p = off += head;
- if (p[-1] & 1)
- chunk->free_size -= head;
- else
- max_contig = max(*p - p[-1], max_contig);
- this_size -= head;
- head = 0;
- }
- /* if tail is small, just keep it around */
- tail = this_size - head - size;
- if (tail < sizeof(int)) {
- tail = 0;
- size = this_size - head;
- }
- /* split if warranted */
- if (head || tail) {
- int nr_extra = !!head + !!tail;
- /* insert new subblocks */
- memmove(p + nr_extra + 1, p + 1,
- sizeof(chunk->map[0]) * (chunk->map_used - i));
- chunk->map_used += nr_extra;
- if (head) {
- if (!seen_free) {
- chunk->first_free = i;
- seen_free = true;
- }
- *++p = off += head;
- ++i;
- max_contig = max(head, max_contig);
- }
- if (tail) {
- p[1] = off + size;
- max_contig = max(tail, max_contig);
- }
- }
- if (!seen_free)
- chunk->first_free = i + 1;
- /* update hint and mark allocated */
- if (i + 1 == chunk->map_used)
- chunk->contig_hint = max_contig; /* fully scanned */
- else
- chunk->contig_hint = max(chunk->contig_hint,
- max_contig);
- chunk->free_size -= size;
- *p |= 1;
- *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
- pcpu_chunk_relocate(chunk, oslot);
- return off;
- }
- chunk->contig_hint = max_contig; /* fully scanned */
- pcpu_chunk_relocate(chunk, oslot);
- /* tell the upper layer that this chunk has no matching area */
- return -1;
- }
- /**
- * pcpu_free_area - free area to a pcpu_chunk
- * @chunk: chunk of interest
- * @freeme: offset of area to free
- * @occ_pages_p: out param for the number of pages the area occupies
- *
- * Free area starting from @freeme to @chunk. Note that this function
- * only modifies the allocation map. It doesn't depopulate or unmap
- * the area.
- *
- * CONTEXT:
- * pcpu_lock.
- */
- static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
- int *occ_pages_p)
- {
- int oslot = pcpu_chunk_slot(chunk);
- int off = 0;
- unsigned i, j;
- int to_free = 0;
- int *p;
- freeme |= 1; /* we are searching for <given offset, in use> pair */
- i = 0;
- j = chunk->map_used;
- while (i != j) {
- unsigned k = (i + j) / 2;
- off = chunk->map[k];
- if (off < freeme)
- i = k + 1;
- else if (off > freeme)
- j = k;
- else
- i = j = k;
- }
- BUG_ON(off != freeme);
- if (i < chunk->first_free)
- chunk->first_free = i;
- p = chunk->map + i;
- *p = off &= ~1;
- chunk->free_size += (p[1] & ~1) - off;
- *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
- /* merge with next? */
- if (!(p[1] & 1))
- to_free++;
- /* merge with previous? */
- if (i > 0 && !(p[-1] & 1)) {
- to_free++;
- i--;
- p--;
- }
- if (to_free) {
- chunk->map_used -= to_free;
- memmove(p + 1, p + 1 + to_free,
- (chunk->map_used - i) * sizeof(chunk->map[0]));
- }
- chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
- pcpu_chunk_relocate(chunk, oslot);
- }
- static struct pcpu_chunk *pcpu_alloc_chunk(void)
- {
- struct pcpu_chunk *chunk;
- chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
- if (!chunk)
- return NULL;
- chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
- sizeof(chunk->map[0]));
- if (!chunk->map) {
- pcpu_mem_free(chunk);
- return NULL;
- }
- chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
- chunk->map[0] = 0;
- chunk->map[1] = pcpu_unit_size | 1;
- chunk->map_used = 1;
- INIT_LIST_HEAD(&chunk->list);
- INIT_LIST_HEAD(&chunk->map_extend_list);
- chunk->free_size = pcpu_unit_size;
- chunk->contig_hint = pcpu_unit_size;
- return chunk;
- }
- static void pcpu_free_chunk(struct pcpu_chunk *chunk)
- {
- if (!chunk)
- return;
- pcpu_mem_free(chunk->map);
- pcpu_mem_free(chunk);
- }
- /**
- * pcpu_chunk_populated - post-population bookkeeping
- * @chunk: pcpu_chunk which got populated
- * @page_start: the start page
- * @page_end: the end page
- *
- * Pages in [@page_start,@page_end) have been populated to @chunk. Update
- * the bookkeeping information accordingly. Must be called after each
- * successful population.
- */
- static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
- int page_start, int page_end)
- {
- int nr = page_end - page_start;
- lockdep_assert_held(&pcpu_lock);
- bitmap_set(chunk->populated, page_start, nr);
- chunk->nr_populated += nr;
- pcpu_nr_empty_pop_pages += nr;
- }
- /**
- * pcpu_chunk_depopulated - post-depopulation bookkeeping
- * @chunk: pcpu_chunk which got depopulated
- * @page_start: the start page
- * @page_end: the end page
- *
- * Pages in [@page_start,@page_end) have been depopulated from @chunk.
- * Update the bookkeeping information accordingly. Must be called after
- * each successful depopulation.
- */
- static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
- int page_start, int page_end)
- {
- int nr = page_end - page_start;
- lockdep_assert_held(&pcpu_lock);
- bitmap_clear(chunk->populated, page_start, nr);
- chunk->nr_populated -= nr;
- pcpu_nr_empty_pop_pages -= nr;
- }
- /*
- * Chunk management implementation.
- *
- * To allow different implementations, chunk alloc/free and
- * [de]population are implemented in a separate file which is pulled
- * into this file and compiled together. The following functions
- * should be implemented.
- *
- * pcpu_populate_chunk - populate the specified range of a chunk
- * pcpu_depopulate_chunk - depopulate the specified range of a chunk
- * pcpu_create_chunk - create a new chunk
- * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
- * pcpu_addr_to_page - translate address to physical address
- * pcpu_verify_alloc_info - check alloc_info is acceptable during init
- */
- static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
- static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
- static struct pcpu_chunk *pcpu_create_chunk(void);
- static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
- static struct page *pcpu_addr_to_page(void *addr);
- static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
- #ifdef CONFIG_NEED_PER_CPU_KM
- #include "percpu-km.c"
- #else
- #include "percpu-vm.c"
- #endif
- /**
- * pcpu_chunk_addr_search - determine chunk containing specified address
- * @addr: address for which the chunk needs to be determined.
- *
- * RETURNS:
- * The address of the found chunk.
- */
- static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
- {
- /* is it in the first chunk? */
- if (pcpu_addr_in_first_chunk(addr)) {
- /* is it in the reserved area? */
- if (pcpu_addr_in_reserved_chunk(addr))
- return pcpu_reserved_chunk;
- return pcpu_first_chunk;
- }
- /*
- * The address is relative to unit0 which might be unused and
- * thus unmapped. Offset the address to the unit space of the
- * current processor before looking it up in the vmalloc
- * space. Note that any possible cpu id can be used here, so
- * there's no need to worry about preemption or cpu hotplug.
- */
- addr += pcpu_unit_offsets[raw_smp_processor_id()];
- return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
- }
- /**
- * pcpu_alloc - the percpu allocator
- * @size: size of area to allocate in bytes
- * @align: alignment of area (max PAGE_SIZE)
- * @reserved: allocate from the reserved chunk if available
- * @gfp: allocation flags
- *
- * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
- * contain %GFP_KERNEL, the allocation is atomic.
- *
- * RETURNS:
- * Percpu pointer to the allocated area on success, NULL on failure.
- */
- static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
- gfp_t gfp)
- {
- static int warn_limit = 10;
- struct pcpu_chunk *chunk;
- const char *err;
- bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
- int occ_pages = 0;
- int slot, off, new_alloc, cpu, ret;
- unsigned long flags;
- void __percpu *ptr;
- /*
- * We want the lowest bit of offset available for in-use/free
- * indicator, so force >= 16bit alignment and make size even.
- */
- if (unlikely(align < 2))
- align = 2;
- size = ALIGN(size, 2);
- if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
- WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
- size, align);
- return NULL;
- }
- if (!is_atomic)
- mutex_lock(&pcpu_alloc_mutex);
- spin_lock_irqsave(&pcpu_lock, flags);
- /* serve reserved allocations from the reserved chunk if available */
- if (reserved && pcpu_reserved_chunk) {
- chunk = pcpu_reserved_chunk;
- if (size > chunk->contig_hint) {
- err = "alloc from reserved chunk failed";
- goto fail_unlock;
- }
- while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
- spin_unlock_irqrestore(&pcpu_lock, flags);
- if (is_atomic ||
- pcpu_extend_area_map(chunk, new_alloc) < 0) {
- err = "failed to extend area map of reserved chunk";
- goto fail;
- }
- spin_lock_irqsave(&pcpu_lock, flags);
- }
- off = pcpu_alloc_area(chunk, size, align, is_atomic,
- &occ_pages);
- if (off >= 0)
- goto area_found;
- err = "alloc from reserved chunk failed";
- goto fail_unlock;
- }
- restart:
- /* search through normal chunks */
- for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
- list_for_each_entry(chunk, &pcpu_slot[slot], list) {
- if (size > chunk->contig_hint)
- continue;
- new_alloc = pcpu_need_to_extend(chunk, is_atomic);
- if (new_alloc) {
- if (is_atomic)
- continue;
- spin_unlock_irqrestore(&pcpu_lock, flags);
- if (pcpu_extend_area_map(chunk,
- new_alloc) < 0) {
- err = "failed to extend area map";
- goto fail;
- }
- spin_lock_irqsave(&pcpu_lock, flags);
- /*
- * pcpu_lock has been dropped, need to
- * restart cpu_slot list walking.
- */
- goto restart;
- }
- off = pcpu_alloc_area(chunk, size, align, is_atomic,
- &occ_pages);
- if (off >= 0)
- goto area_found;
- }
- }
- spin_unlock_irqrestore(&pcpu_lock, flags);
- /*
- * No space left. Create a new chunk. We don't want multiple
- * tasks to create chunks simultaneously. Serialize and create iff
- * there's still no empty chunk after grabbing the mutex.
- */
- if (is_atomic)
- goto fail;
- if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
- chunk = pcpu_create_chunk();
- if (!chunk) {
- err = "failed to allocate new chunk";
- goto fail;
- }
- spin_lock_irqsave(&pcpu_lock, flags);
- pcpu_chunk_relocate(chunk, -1);
- } else {
- spin_lock_irqsave(&pcpu_lock, flags);
- }
- goto restart;
- area_found:
- spin_unlock_irqrestore(&pcpu_lock, flags);
- /* populate if not all pages are already there */
- if (!is_atomic) {
- int page_start, page_end, rs, re;
- page_start = PFN_DOWN(off);
- page_end = PFN_UP(off + size);
- pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
- WARN_ON(chunk->immutable);
- ret = pcpu_populate_chunk(chunk, rs, re);
- spin_lock_irqsave(&pcpu_lock, flags);
- if (ret) {
- pcpu_free_area(chunk, off, &occ_pages);
- err = "failed to populate";
- goto fail_unlock;
- }
- pcpu_chunk_populated(chunk, rs, re);
- spin_unlock_irqrestore(&pcpu_lock, flags);
- }
- mutex_unlock(&pcpu_alloc_mutex);
- }
- if (chunk != pcpu_reserved_chunk) {
- spin_lock_irqsave(&pcpu_lock, flags);
- pcpu_nr_empty_pop_pages -= occ_pages;
- spin_unlock_irqrestore(&pcpu_lock, flags);
- }
- if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
- pcpu_schedule_balance_work();
- /* clear the areas and return address relative to base address */
- for_each_possible_cpu(cpu)
- memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
- ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
- kmemleak_alloc_percpu(ptr, size, gfp);
- return ptr;
- fail_unlock:
- spin_unlock_irqrestore(&pcpu_lock, flags);
- fail:
- if (!is_atomic && warn_limit) {
- pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
- size, align, is_atomic, err);
- dump_stack();
- if (!--warn_limit)
- pr_info("limit reached, disable warning\n");
- }
- if (is_atomic) {
- /* see the flag handling in pcpu_blance_workfn() */
- pcpu_atomic_alloc_failed = true;
- pcpu_schedule_balance_work();
- } else {
- mutex_unlock(&pcpu_alloc_mutex);
- }
- return NULL;
- }
- /**
- * __alloc_percpu_gfp - allocate dynamic percpu area
- * @size: size of area to allocate in bytes
- * @align: alignment of area (max PAGE_SIZE)
- * @gfp: allocation flags
- *
- * Allocate zero-filled percpu area of @size bytes aligned at @align. If
- * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
- * be called from any context but is a lot more likely to fail.
- *
- * RETURNS:
- * Percpu pointer to the allocated area on success, NULL on failure.
- */
- void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
- {
- return pcpu_alloc(size, align, false, gfp);
- }
- EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
- /**
- * __alloc_percpu - allocate dynamic percpu area
- * @size: size of area to allocate in bytes
- * @align: alignment of area (max PAGE_SIZE)
- *
- * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
- */
- void __percpu *__alloc_percpu(size_t size, size_t align)
- {
- return pcpu_alloc(size, align, false, GFP_KERNEL);
- }
- EXPORT_SYMBOL_GPL(__alloc_percpu);
- /**
- * __alloc_reserved_percpu - allocate reserved percpu area
- * @size: size of area to allocate in bytes
- * @align: alignment of area (max PAGE_SIZE)
- *
- * Allocate zero-filled percpu area of @size bytes aligned at @align
- * from reserved percpu area if arch has set it up; otherwise,
- * allocation is served from the same dynamic area. Might sleep.
- * Might trigger writeouts.
- *
- * CONTEXT:
- * Does GFP_KERNEL allocation.
- *
- * RETURNS:
- * Percpu pointer to the allocated area on success, NULL on failure.
- */
- void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
- {
- return pcpu_alloc(size, align, true, GFP_KERNEL);
- }
- /**
- * pcpu_balance_workfn - manage the amount of free chunks and populated pages
- * @work: unused
- *
- * Reclaim all fully free chunks except for the first one.
- */
- static void pcpu_balance_workfn(struct work_struct *work)
- {
- LIST_HEAD(to_free);
- struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
- struct pcpu_chunk *chunk, *next;
- int slot, nr_to_pop, ret;
- /*
- * There's no reason to keep around multiple unused chunks and VM
- * areas can be scarce. Destroy all free chunks except for one.
- */
- mutex_lock(&pcpu_alloc_mutex);
- spin_lock_irq(&pcpu_lock);
- list_for_each_entry_safe(chunk, next, free_head, list) {
- WARN_ON(chunk->immutable);
- /* spare the first one */
- if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
- continue;
- list_del_init(&chunk->map_extend_list);
- list_move(&chunk->list, &to_free);
- }
- spin_unlock_irq(&pcpu_lock);
- list_for_each_entry_safe(chunk, next, &to_free, list) {
- int rs, re;
- pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
- pcpu_depopulate_chunk(chunk, rs, re);
- spin_lock_irq(&pcpu_lock);
- pcpu_chunk_depopulated(chunk, rs, re);
- spin_unlock_irq(&pcpu_lock);
- }
- pcpu_destroy_chunk(chunk);
- }
- /* service chunks which requested async area map extension */
- do {
- int new_alloc = 0;
- spin_lock_irq(&pcpu_lock);
- chunk = list_first_entry_or_null(&pcpu_map_extend_chunks,
- struct pcpu_chunk, map_extend_list);
- if (chunk) {
- list_del_init(&chunk->map_extend_list);
- new_alloc = pcpu_need_to_extend(chunk, false);
- }
- spin_unlock_irq(&pcpu_lock);
- if (new_alloc)
- pcpu_extend_area_map(chunk, new_alloc);
- } while (chunk);
- /*
- * Ensure there are certain number of free populated pages for
- * atomic allocs. Fill up from the most packed so that atomic
- * allocs don't increase fragmentation. If atomic allocation
- * failed previously, always populate the maximum amount. This
- * should prevent atomic allocs larger than PAGE_SIZE from keeping
- * failing indefinitely; however, large atomic allocs are not
- * something we support properly and can be highly unreliable and
- * inefficient.
- */
- retry_pop:
- if (pcpu_atomic_alloc_failed) {
- nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
- /* best effort anyway, don't worry about synchronization */
- pcpu_atomic_alloc_failed = false;
- } else {
- nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
- pcpu_nr_empty_pop_pages,
- 0, PCPU_EMPTY_POP_PAGES_HIGH);
- }
- for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
- int nr_unpop = 0, rs, re;
- if (!nr_to_pop)
- break;
- spin_lock_irq(&pcpu_lock);
- list_for_each_entry(chunk, &pcpu_slot[slot], list) {
- nr_unpop = pcpu_unit_pages - chunk->nr_populated;
- if (nr_unpop)
- break;
- }
- spin_unlock_irq(&pcpu_lock);
- if (!nr_unpop)
- continue;
- /* @chunk can't go away while pcpu_alloc_mutex is held */
- pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
- int nr = min(re - rs, nr_to_pop);
- ret = pcpu_populate_chunk(chunk, rs, rs + nr);
- if (!ret) {
- nr_to_pop -= nr;
- spin_lock_irq(&pcpu_lock);
- pcpu_chunk_populated(chunk, rs, rs + nr);
- spin_unlock_irq(&pcpu_lock);
- } else {
- nr_to_pop = 0;
- }
- if (!nr_to_pop)
- break;
- }
- }
- if (nr_to_pop) {
- /* ran out of chunks to populate, create a new one and retry */
- chunk = pcpu_create_chunk();
- if (chunk) {
- spin_lock_irq(&pcpu_lock);
- pcpu_chunk_relocate(chunk, -1);
- spin_unlock_irq(&pcpu_lock);
- goto retry_pop;
- }
- }
- mutex_unlock(&pcpu_alloc_mutex);
- }
- /**
- * free_percpu - free percpu area
- * @ptr: pointer to area to free
- *
- * Free percpu area @ptr.
- *
- * CONTEXT:
- * Can be called from atomic context.
- */
- void free_percpu(void __percpu *ptr)
- {
- void *addr;
- struct pcpu_chunk *chunk;
- unsigned long flags;
- int off, occ_pages;
- if (!ptr)
- return;
- kmemleak_free_percpu(ptr);
- addr = __pcpu_ptr_to_addr(ptr);
- spin_lock_irqsave(&pcpu_lock, flags);
- chunk = pcpu_chunk_addr_search(addr);
- off = addr - chunk->base_addr;
- pcpu_free_area(chunk, off, &occ_pages);
- if (chunk != pcpu_reserved_chunk)
- pcpu_nr_empty_pop_pages += occ_pages;
- /* if there are more than one fully free chunks, wake up grim reaper */
- if (chunk->free_size == pcpu_unit_size) {
- struct pcpu_chunk *pos;
- list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
- if (pos != chunk) {
- pcpu_schedule_balance_work();
- break;
- }
- }
- spin_unlock_irqrestore(&pcpu_lock, flags);
- }
- EXPORT_SYMBOL_GPL(free_percpu);
- /**
- * is_kernel_percpu_address - test whether address is from static percpu area
- * @addr: address to test
- *
- * Test whether @addr belongs to in-kernel static percpu area. Module
- * static percpu areas are not considered. For those, use
- * is_module_percpu_address().
- *
- * RETURNS:
- * %true if @addr is from in-kernel static percpu area, %false otherwise.
- */
- bool is_kernel_percpu_address(unsigned long addr)
- {
- #ifdef CONFIG_SMP
- const size_t static_size = __per_cpu_end - __per_cpu_start;
- void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
- unsigned int cpu;
- for_each_possible_cpu(cpu) {
- void *start = per_cpu_ptr(base, cpu);
- if ((void *)addr >= start && (void *)addr < start + static_size)
- return true;
- }
- #endif
- /* on UP, can't distinguish from other static vars, always false */
- return false;
- }
- /**
- * per_cpu_ptr_to_phys - convert translated percpu address to physical address
- * @addr: the address to be converted to physical address
- *
- * Given @addr which is dereferenceable address obtained via one of
- * percpu access macros, this function translates it into its physical
- * address. The caller is responsible for ensuring @addr stays valid
- * until this function finishes.
- *
- * percpu allocator has special setup for the first chunk, which currently
- * supports either embedding in linear address space or vmalloc mapping,
- * and, from the second one, the backing allocator (currently either vm or
- * km) provides translation.
- *
- * The addr can be translated simply without checking if it falls into the
- * first chunk. But the current code reflects better how percpu allocator
- * actually works, and the verification can discover both bugs in percpu
- * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
- * code.
- *
- * RETURNS:
- * The physical address for @addr.
- */
- phys_addr_t per_cpu_ptr_to_phys(void *addr)
- {
- void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
- bool in_first_chunk = false;
- unsigned long first_low, first_high;
- unsigned int cpu;
- /*
- * The following test on unit_low/high isn't strictly
- * necessary but will speed up lookups of addresses which
- * aren't in the first chunk.
- */
- first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
- first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
- pcpu_unit_pages);
- if ((unsigned long)addr >= first_low &&
- (unsigned long)addr < first_high) {
- for_each_possible_cpu(cpu) {
- void *start = per_cpu_ptr(base, cpu);
- if (addr >= start && addr < start + pcpu_unit_size) {
- in_first_chunk = true;
- break;
- }
- }
- }
- if (in_first_chunk) {
- if (!is_vmalloc_addr(addr))
- return __pa(addr);
- else
- return page_to_phys(vmalloc_to_page(addr)) +
- offset_in_page(addr);
- } else
- return page_to_phys(pcpu_addr_to_page(addr)) +
- offset_in_page(addr);
- }
- /**
- * pcpu_alloc_alloc_info - allocate percpu allocation info
- * @nr_groups: the number of groups
- * @nr_units: the number of units
- *
- * Allocate ai which is large enough for @nr_groups groups containing
- * @nr_units units. The returned ai's groups[0].cpu_map points to the
- * cpu_map array which is long enough for @nr_units and filled with
- * NR_CPUS. It's the caller's responsibility to initialize cpu_map
- * pointer of other groups.
- *
- * RETURNS:
- * Pointer to the allocated pcpu_alloc_info on success, NULL on
- * failure.
- */
- struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
- int nr_units)
- {
- struct pcpu_alloc_info *ai;
- size_t base_size, ai_size;
- void *ptr;
- int unit;
- base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
- __alignof__(ai->groups[0].cpu_map[0]));
- ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
- ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
- if (!ptr)
- return NULL;
- ai = ptr;
- ptr += base_size;
- ai->groups[0].cpu_map = ptr;
- for (unit = 0; unit < nr_units; unit++)
- ai->groups[0].cpu_map[unit] = NR_CPUS;
- ai->nr_groups = nr_groups;
- ai->__ai_size = PFN_ALIGN(ai_size);
- return ai;
- }
- /**
- * pcpu_free_alloc_info - free percpu allocation info
- * @ai: pcpu_alloc_info to free
- *
- * Free @ai which was allocated by pcpu_alloc_alloc_info().
- */
- void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
- {
- memblock_free_early(__pa(ai), ai->__ai_size);
- }
- /**
- * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
- * @lvl: loglevel
- * @ai: allocation info to dump
- *
- * Print out information about @ai using loglevel @lvl.
- */
- static void pcpu_dump_alloc_info(const char *lvl,
- const struct pcpu_alloc_info *ai)
- {
- int group_width = 1, cpu_width = 1, width;
- char empty_str[] = "--------";
- int alloc = 0, alloc_end = 0;
- int group, v;
- int upa, apl; /* units per alloc, allocs per line */
- v = ai->nr_groups;
- while (v /= 10)
- group_width++;
- v = num_possible_cpus();
- while (v /= 10)
- cpu_width++;
- empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
- upa = ai->alloc_size / ai->unit_size;
- width = upa * (cpu_width + 1) + group_width + 3;
- apl = rounddown_pow_of_two(max(60 / width, 1));
- printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
- lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
- ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
- for (group = 0; group < ai->nr_groups; group++) {
- const struct pcpu_group_info *gi = &ai->groups[group];
- int unit = 0, unit_end = 0;
- BUG_ON(gi->nr_units % upa);
- for (alloc_end += gi->nr_units / upa;
- alloc < alloc_end; alloc++) {
- if (!(alloc % apl)) {
- pr_cont("\n");
- printk("%spcpu-alloc: ", lvl);
- }
- pr_cont("[%0*d] ", group_width, group);
- for (unit_end += upa; unit < unit_end; unit++)
- if (gi->cpu_map[unit] != NR_CPUS)
- pr_cont("%0*d ",
- cpu_width, gi->cpu_map[unit]);
- else
- pr_cont("%s ", empty_str);
- }
- }
- pr_cont("\n");
- }
- /**
- * pcpu_setup_first_chunk - initialize the first percpu chunk
- * @ai: pcpu_alloc_info describing how to percpu area is shaped
- * @base_addr: mapped address
- *
- * Initialize the first percpu chunk which contains the kernel static
- * perpcu area. This function is to be called from arch percpu area
- * setup path.
- *
- * @ai contains all information necessary to initialize the first
- * chunk and prime the dynamic percpu allocator.
- *
- * @ai->static_size is the size of static percpu area.
- *
- * @ai->reserved_size, if non-zero, specifies the amount of bytes to
- * reserve after the static area in the first chunk. This reserves
- * the first chunk such that it's available only through reserved
- * percpu allocation. This is primarily used to serve module percpu
- * static areas on architectures where the addressing model has
- * limited offset range for symbol relocations to guarantee module
- * percpu symbols fall inside the relocatable range.
- *
- * @ai->dyn_size determines the number of bytes available for dynamic
- * allocation in the first chunk. The area between @ai->static_size +
- * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
- *
- * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
- * and equal to or larger than @ai->static_size + @ai->reserved_size +
- * @ai->dyn_size.
- *
- * @ai->atom_size is the allocation atom size and used as alignment
- * for vm areas.
- *
- * @ai->alloc_size is the allocation size and always multiple of
- * @ai->atom_size. This is larger than @ai->atom_size if
- * @ai->unit_size is larger than @ai->atom_size.
- *
- * @ai->nr_groups and @ai->groups describe virtual memory layout of
- * percpu areas. Units which should be colocated are put into the
- * same group. Dynamic VM areas will be allocated according to these
- * groupings. If @ai->nr_groups is zero, a single group containing
- * all units is assumed.
- *
- * The caller should have mapped the first chunk at @base_addr and
- * copied static data to each unit.
- *
- * If the first chunk ends up with both reserved and dynamic areas, it
- * is served by two chunks - one to serve the core static and reserved
- * areas and the other for the dynamic area. They share the same vm
- * and page map but uses different area allocation map to stay away
- * from each other. The latter chunk is circulated in the chunk slots
- * and available for dynamic allocation like any other chunks.
- *
- * RETURNS:
- * 0 on success, -errno on failure.
- */
- int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
- void *base_addr)
- {
- static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
- static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
- size_t dyn_size = ai->dyn_size;
- size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
- struct pcpu_chunk *schunk, *dchunk = NULL;
- unsigned long *group_offsets;
- size_t *group_sizes;
- unsigned long *unit_off;
- unsigned int cpu;
- int *unit_map;
- int group, unit, i;
- #define PCPU_SETUP_BUG_ON(cond) do { \
- if (unlikely(cond)) { \
- pr_emerg("failed to initialize, %s\n", #cond); \
- pr_emerg("cpu_possible_mask=%*pb\n", \
- cpumask_pr_args(cpu_possible_mask)); \
- pcpu_dump_alloc_info(KERN_EMERG, ai); \
- BUG(); \
- } \
- } while (0)
- /* sanity checks */
- PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
- #ifdef CONFIG_SMP
- PCPU_SETUP_BUG_ON(!ai->static_size);
- PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
- #endif
- PCPU_SETUP_BUG_ON(!base_addr);
- PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
- PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
- PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
- PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
- PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
- PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
- /* process group information and build config tables accordingly */
- group_offsets = memblock_virt_alloc(ai->nr_groups *
- sizeof(group_offsets[0]), 0);
- group_sizes = memblock_virt_alloc(ai->nr_groups *
- sizeof(group_sizes[0]), 0);
- unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
- unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
- for (cpu = 0; cpu < nr_cpu_ids; cpu++)
- unit_map[cpu] = UINT_MAX;
- pcpu_low_unit_cpu = NR_CPUS;
- pcpu_high_unit_cpu = NR_CPUS;
- for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
- const struct pcpu_group_info *gi = &ai->groups[group];
- group_offsets[group] = gi->base_offset;
- group_sizes[group] = gi->nr_units * ai->unit_size;
- for (i = 0; i < gi->nr_units; i++) {
- cpu = gi->cpu_map[i];
- if (cpu == NR_CPUS)
- continue;
- PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
- PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
- PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
- unit_map[cpu] = unit + i;
- unit_off[cpu] = gi->base_offset + i * ai->unit_size;
- /* determine low/high unit_cpu */
- if (pcpu_low_unit_cpu == NR_CPUS ||
- unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
- pcpu_low_unit_cpu = cpu;
- if (pcpu_high_unit_cpu == NR_CPUS ||
- unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
- pcpu_high_unit_cpu = cpu;
- }
- }
- pcpu_nr_units = unit;
- for_each_possible_cpu(cpu)
- PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
- /* we're done parsing the input, undefine BUG macro and dump config */
- #undef PCPU_SETUP_BUG_ON
- pcpu_dump_alloc_info(KERN_DEBUG, ai);
- pcpu_nr_groups = ai->nr_groups;
- pcpu_group_offsets = group_offsets;
- pcpu_group_sizes = group_sizes;
- pcpu_unit_map = unit_map;
- pcpu_unit_offsets = unit_off;
- /* determine basic parameters */
- pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
- pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
- pcpu_atom_size = ai->atom_size;
- pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
- BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
- /*
- * Allocate chunk slots. The additional last slot is for
- * empty chunks.
- */
- pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
- pcpu_slot = memblock_virt_alloc(
- pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
- for (i = 0; i < pcpu_nr_slots; i++)
- INIT_LIST_HEAD(&pcpu_slot[i]);
- /*
- * Initialize static chunk. If reserved_size is zero, the
- * static chunk covers static area + dynamic allocation area
- * in the first chunk. If reserved_size is not zero, it
- * covers static area + reserved area (mostly used for module
- * static percpu allocation).
- */
- schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
- INIT_LIST_HEAD(&schunk->list);
- INIT_LIST_HEAD(&schunk->map_extend_list);
- schunk->base_addr = base_addr;
- schunk->map = smap;
- schunk->map_alloc = ARRAY_SIZE(smap);
- schunk->immutable = true;
- bitmap_fill(schunk->populated, pcpu_unit_pages);
- schunk->nr_populated = pcpu_unit_pages;
- if (ai->reserved_size) {
- schunk->free_size = ai->reserved_size;
- pcpu_reserved_chunk = schunk;
- pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
- } else {
- schunk->free_size = dyn_size;
- dyn_size = 0; /* dynamic area covered */
- }
- schunk->contig_hint = schunk->free_size;
- schunk->map[0] = 1;
- schunk->map[1] = ai->static_size;
- schunk->map_used = 1;
- if (schunk->free_size)
- schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
- schunk->map[schunk->map_used] |= 1;
- /* init dynamic chunk if necessary */
- if (dyn_size) {
- dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
- INIT_LIST_HEAD(&dchunk->list);
- INIT_LIST_HEAD(&dchunk->map_extend_list);
- dchunk->base_addr = base_addr;
- dchunk->map = dmap;
- dchunk->map_alloc = ARRAY_SIZE(dmap);
- dchunk->immutable = true;
- bitmap_fill(dchunk->populated, pcpu_unit_pages);
- dchunk->nr_populated = pcpu_unit_pages;
- dchunk->contig_hint = dchunk->free_size = dyn_size;
- dchunk->map[0] = 1;
- dchunk->map[1] = pcpu_reserved_chunk_limit;
- dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
- dchunk->map_used = 2;
- }
- /* link the first chunk in */
- pcpu_first_chunk = dchunk ?: schunk;
- pcpu_nr_empty_pop_pages +=
- pcpu_count_occupied_pages(pcpu_first_chunk, 1);
- pcpu_chunk_relocate(pcpu_first_chunk, -1);
- /* we're done */
- pcpu_base_addr = base_addr;
- return 0;
- }
- #ifdef CONFIG_SMP
- const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
- [PCPU_FC_AUTO] = "auto",
- [PCPU_FC_EMBED] = "embed",
- [PCPU_FC_PAGE] = "page",
- };
- enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
- static int __init percpu_alloc_setup(char *str)
- {
- if (!str)
- return -EINVAL;
- if (0)
- /* nada */;
- #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
- else if (!strcmp(str, "embed"))
- pcpu_chosen_fc = PCPU_FC_EMBED;
- #endif
- #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
- else if (!strcmp(str, "page"))
- pcpu_chosen_fc = PCPU_FC_PAGE;
- #endif
- else
- pr_warn("unknown allocator %s specified\n", str);
- return 0;
- }
- early_param("percpu_alloc", percpu_alloc_setup);
- /*
- * pcpu_embed_first_chunk() is used by the generic percpu setup.
- * Build it if needed by the arch config or the generic setup is going
- * to be used.
- */
- #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
- !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
- #define BUILD_EMBED_FIRST_CHUNK
- #endif
- /* build pcpu_page_first_chunk() iff needed by the arch config */
- #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
- #define BUILD_PAGE_FIRST_CHUNK
- #endif
- /* pcpu_build_alloc_info() is used by both embed and page first chunk */
- #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
- /**
- * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
- * @reserved_size: the size of reserved percpu area in bytes
- * @dyn_size: minimum free size for dynamic allocation in bytes
- * @atom_size: allocation atom size
- * @cpu_distance_fn: callback to determine distance between cpus, optional
- *
- * This function determines grouping of units, their mappings to cpus
- * and other parameters considering needed percpu size, allocation
- * atom size and distances between CPUs.
- *
- * Groups are always multiples of atom size and CPUs which are of
- * LOCAL_DISTANCE both ways are grouped together and share space for
- * units in the same group. The returned configuration is guaranteed
- * to have CPUs on different nodes on different groups and >=75% usage
- * of allocated virtual address space.
- *
- * RETURNS:
- * On success, pointer to the new allocation_info is returned. On
- * failure, ERR_PTR value is returned.
- */
- static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
- size_t reserved_size, size_t dyn_size,
- size_t atom_size,
- pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
- {
- static int group_map[NR_CPUS] __initdata;
- static int group_cnt[NR_CPUS] __initdata;
- const size_t static_size = __per_cpu_end - __per_cpu_start;
- int nr_groups = 1, nr_units = 0;
- size_t size_sum, min_unit_size, alloc_size;
- int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
- int last_allocs, group, unit;
- unsigned int cpu, tcpu;
- struct pcpu_alloc_info *ai;
- unsigned int *cpu_map;
- /* this function may be called multiple times */
- memset(group_map, 0, sizeof(group_map));
- memset(group_cnt, 0, sizeof(group_cnt));
- /* calculate size_sum and ensure dyn_size is enough for early alloc */
- size_sum = PFN_ALIGN(static_size + reserved_size +
- max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
- dyn_size = size_sum - static_size - reserved_size;
- /*
- * Determine min_unit_size, alloc_size and max_upa such that
- * alloc_size is multiple of atom_size and is the smallest
- * which can accommodate 4k aligned segments which are equal to
- * or larger than min_unit_size.
- */
- min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
- alloc_size = roundup(min_unit_size, atom_size);
- upa = alloc_size / min_unit_size;
- while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
- upa--;
- max_upa = upa;
- /* group cpus according to their proximity */
- for_each_possible_cpu(cpu) {
- group = 0;
- next_group:
- for_each_possible_cpu(tcpu) {
- if (cpu == tcpu)
- break;
- if (group_map[tcpu] == group && cpu_distance_fn &&
- (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
- cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
- group++;
- nr_groups = max(nr_groups, group + 1);
- goto next_group;
- }
- }
- group_map[cpu] = group;
- group_cnt[group]++;
- }
- /*
- * Expand unit size until address space usage goes over 75%
- * and then as much as possible without using more address
- * space.
- */
- last_allocs = INT_MAX;
- for (upa = max_upa; upa; upa--) {
- int allocs = 0, wasted = 0;
- if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
- continue;
- for (group = 0; group < nr_groups; group++) {
- int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
- allocs += this_allocs;
- wasted += this_allocs * upa - group_cnt[group];
- }
- /*
- * Don't accept if wastage is over 1/3. The
- * greater-than comparison ensures upa==1 always
- * passes the following check.
- */
- if (wasted > num_possible_cpus() / 3)
- continue;
- /* and then don't consume more memory */
- if (allocs > last_allocs)
- break;
- last_allocs = allocs;
- best_upa = upa;
- }
- upa = best_upa;
- /* allocate and fill alloc_info */
- for (group = 0; group < nr_groups; group++)
- nr_units += roundup(group_cnt[group], upa);
- ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
- if (!ai)
- return ERR_PTR(-ENOMEM);
- cpu_map = ai->groups[0].cpu_map;
- for (group = 0; group < nr_groups; group++) {
- ai->groups[group].cpu_map = cpu_map;
- cpu_map += roundup(group_cnt[group], upa);
- }
- ai->static_size = static_size;
- ai->reserved_size = reserved_size;
- ai->dyn_size = dyn_size;
- ai->unit_size = alloc_size / upa;
- ai->atom_size = atom_size;
- ai->alloc_size = alloc_size;
- for (group = 0, unit = 0; group_cnt[group]; group++) {
- struct pcpu_group_info *gi = &ai->groups[group];
- /*
- * Initialize base_offset as if all groups are located
- * back-to-back. The caller should update this to
- * reflect actual allocation.
- */
- gi->base_offset = unit * ai->unit_size;
- for_each_possible_cpu(cpu)
- if (group_map[cpu] == group)
- gi->cpu_map[gi->nr_units++] = cpu;
- gi->nr_units = roundup(gi->nr_units, upa);
- unit += gi->nr_units;
- }
- BUG_ON(unit != nr_units);
- return ai;
- }
- #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
- #if defined(BUILD_EMBED_FIRST_CHUNK)
- /**
- * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
- * @reserved_size: the size of reserved percpu area in bytes
- * @dyn_size: minimum free size for dynamic allocation in bytes
- * @atom_size: allocation atom size
- * @cpu_distance_fn: callback to determine distance between cpus, optional
- * @alloc_fn: function to allocate percpu page
- * @free_fn: function to free percpu page
- *
- * This is a helper to ease setting up embedded first percpu chunk and
- * can be called where pcpu_setup_first_chunk() is expected.
- *
- * If this function is used to setup the first chunk, it is allocated
- * by calling @alloc_fn and used as-is without being mapped into
- * vmalloc area. Allocations are always whole multiples of @atom_size
- * aligned to @atom_size.
- *
- * This enables the first chunk to piggy back on the linear physical
- * mapping which often uses larger page size. Please note that this
- * can result in very sparse cpu->unit mapping on NUMA machines thus
- * requiring large vmalloc address space. Don't use this allocator if
- * vmalloc space is not orders of magnitude larger than distances
- * between node memory addresses (ie. 32bit NUMA machines).
- *
- * @dyn_size specifies the minimum dynamic area size.
- *
- * If the needed size is smaller than the minimum or specified unit
- * size, the leftover is returned using @free_fn.
- *
- * RETURNS:
- * 0 on success, -errno on failure.
- */
- int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
- size_t atom_size,
- pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
- pcpu_fc_alloc_fn_t alloc_fn,
- pcpu_fc_free_fn_t free_fn)
- {
- void *base = (void *)ULONG_MAX;
- void **areas = NULL;
- struct pcpu_alloc_info *ai;
- size_t size_sum, areas_size;
- unsigned long max_distance;
- int group, i, highest_group, rc;
- ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
- cpu_distance_fn);
- if (IS_ERR(ai))
- return PTR_ERR(ai);
- size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
- areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
- areas = memblock_virt_alloc_nopanic(areas_size, 0);
- if (!areas) {
- rc = -ENOMEM;
- goto out_free;
- }
- /* allocate, copy and determine base address & max_distance */
- highest_group = 0;
- for (group = 0; group < ai->nr_groups; group++) {
- struct pcpu_group_info *gi = &ai->groups[group];
- unsigned int cpu = NR_CPUS;
- void *ptr;
- for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
- cpu = gi->cpu_map[i];
- BUG_ON(cpu == NR_CPUS);
- /* allocate space for the whole group */
- ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
- if (!ptr) {
- rc = -ENOMEM;
- goto out_free_areas;
- }
- /* kmemleak tracks the percpu allocations separately */
- kmemleak_free(ptr);
- areas[group] = ptr;
- base = min(ptr, base);
- if (ptr > areas[highest_group])
- highest_group = group;
- }
- max_distance = areas[highest_group] - base;
- max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
- /* warn if maximum distance is further than 75% of vmalloc space */
- if (max_distance > VMALLOC_TOTAL * 3 / 4) {
- pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
- max_distance, VMALLOC_TOTAL);
- #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
- /* and fail if we have fallback */
- rc = -EINVAL;
- goto out_free_areas;
- #endif
- }
- /*
- * Copy data and free unused parts. This should happen after all
- * allocations are complete; otherwise, we may end up with
- * overlapping groups.
- */
- for (group = 0; group < ai->nr_groups; group++) {
- struct pcpu_group_info *gi = &ai->groups[group];
- void *ptr = areas[group];
- for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
- if (gi->cpu_map[i] == NR_CPUS) {
- /* unused unit, free whole */
- free_fn(ptr, ai->unit_size);
- continue;
- }
- /* copy and return the unused part */
- memcpy(ptr, __per_cpu_load, ai->static_size);
- free_fn(ptr + size_sum, ai->unit_size - size_sum);
- }
- }
- /* base address is now known, determine group base offsets */
- for (group = 0; group < ai->nr_groups; group++) {
- ai->groups[group].base_offset = areas[group] - base;
- }
- pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
- PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
- ai->dyn_size, ai->unit_size);
- rc = pcpu_setup_first_chunk(ai, base);
- goto out_free;
- out_free_areas:
- for (group = 0; group < ai->nr_groups; group++)
- if (areas[group])
- free_fn(areas[group],
- ai->groups[group].nr_units * ai->unit_size);
- out_free:
- pcpu_free_alloc_info(ai);
- if (areas)
- memblock_free_early(__pa(areas), areas_size);
- return rc;
- }
- #endif /* BUILD_EMBED_FIRST_CHUNK */
- #ifdef BUILD_PAGE_FIRST_CHUNK
- /**
- * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
- * @reserved_size: the size of reserved percpu area in bytes
- * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
- * @free_fn: function to free percpu page, always called with PAGE_SIZE
- * @populate_pte_fn: function to populate pte
- *
- * This is a helper to ease setting up page-remapped first percpu
- * chunk and can be called where pcpu_setup_first_chunk() is expected.
- *
- * This is the basic allocator. Static percpu area is allocated
- * page-by-page into vmalloc area.
- *
- * RETURNS:
- * 0 on success, -errno on failure.
- */
- int __init pcpu_page_first_chunk(size_t reserved_size,
- pcpu_fc_alloc_fn_t alloc_fn,
- pcpu_fc_free_fn_t free_fn,
- pcpu_fc_populate_pte_fn_t populate_pte_fn)
- {
- static struct vm_struct vm;
- struct pcpu_alloc_info *ai;
- char psize_str[16];
- int unit_pages;
- size_t pages_size;
- struct page **pages;
- int unit, i, j, rc;
- snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
- ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
- if (IS_ERR(ai))
- return PTR_ERR(ai);
- BUG_ON(ai->nr_groups != 1);
- BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
- unit_pages = ai->unit_size >> PAGE_SHIFT;
- /* unaligned allocations can't be freed, round up to page size */
- pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
- sizeof(pages[0]));
- pages = memblock_virt_alloc(pages_size, 0);
- /* allocate pages */
- j = 0;
- for (unit = 0; unit < num_possible_cpus(); unit++)
- for (i = 0; i < unit_pages; i++) {
- unsigned int cpu = ai->groups[0].cpu_map[unit];
- void *ptr;
- ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
- if (!ptr) {
- pr_warn("failed to allocate %s page for cpu%u\n",
- psize_str, cpu);
- goto enomem;
- }
- /* kmemleak tracks the percpu allocations separately */
- kmemleak_free(ptr);
- pages[j++] = virt_to_page(ptr);
- }
- /* allocate vm area, map the pages and copy static data */
- vm.flags = VM_ALLOC;
- vm.size = num_possible_cpus() * ai->unit_size;
- vm_area_register_early(&vm, PAGE_SIZE);
- for (unit = 0; unit < num_possible_cpus(); unit++) {
- unsigned long unit_addr =
- (unsigned long)vm.addr + unit * ai->unit_size;
- for (i = 0; i < unit_pages; i++)
- populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
- /* pte already populated, the following shouldn't fail */
- rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
- unit_pages);
- if (rc < 0)
- panic("failed to map percpu area, err=%d\n", rc);
- /*
- * FIXME: Archs with virtual cache should flush local
- * cache for the linear mapping here - something
- * equivalent to flush_cache_vmap() on the local cpu.
- * flush_cache_vmap() can't be used as most supporting
- * data structures are not set up yet.
- */
- /* copy static data */
- memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
- }
- /* we're ready, commit */
- pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
- unit_pages, psize_str, ai->static_size,
- ai->reserved_size, ai->dyn_size);
- rc = pcpu_setup_first_chunk(ai, vm.addr);
- goto out_free_ar;
- enomem:
- while (--j >= 0)
- free_fn(page_address(pages[j]), PAGE_SIZE);
- rc = -ENOMEM;
- out_free_ar:
- memblock_free_early(__pa(pages), pages_size);
- pcpu_free_alloc_info(ai);
- return rc;
- }
- #endif /* BUILD_PAGE_FIRST_CHUNK */
- #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
- /*
- * Generic SMP percpu area setup.
- *
- * The embedding helper is used because its behavior closely resembles
- * the original non-dynamic generic percpu area setup. This is
- * important because many archs have addressing restrictions and might
- * fail if the percpu area is located far away from the previous
- * location. As an added bonus, in non-NUMA cases, embedding is
- * generally a good idea TLB-wise because percpu area can piggy back
- * on the physical linear memory mapping which uses large page
- * mappings on applicable archs.
- */
- unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
- EXPORT_SYMBOL(__per_cpu_offset);
- static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
- size_t align)
- {
- return memblock_virt_alloc_from_nopanic(
- size, align, __pa(MAX_DMA_ADDRESS));
- }
- static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
- {
- memblock_free_early(__pa(ptr), size);
- }
- void __init setup_per_cpu_areas(void)
- {
- unsigned long delta;
- unsigned int cpu;
- int rc;
- /*
- * Always reserve area for module percpu variables. That's
- * what the legacy allocator did.
- */
- rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
- PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
- pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
- if (rc < 0)
- panic("Failed to initialize percpu areas.");
- delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
- for_each_possible_cpu(cpu)
- __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
- }
- #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
- #else /* CONFIG_SMP */
- /*
- * UP percpu area setup.
- *
- * UP always uses km-based percpu allocator with identity mapping.
- * Static percpu variables are indistinguishable from the usual static
- * variables and don't require any special preparation.
- */
- void __init setup_per_cpu_areas(void)
- {
- const size_t unit_size =
- roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
- PERCPU_DYNAMIC_RESERVE));
- struct pcpu_alloc_info *ai;
- void *fc;
- ai = pcpu_alloc_alloc_info(1, 1);
- fc = memblock_virt_alloc_from_nopanic(unit_size,
- PAGE_SIZE,
- __pa(MAX_DMA_ADDRESS));
- if (!ai || !fc)
- panic("Failed to allocate memory for percpu areas.");
- /* kmemleak tracks the percpu allocations separately */
- kmemleak_free(fc);
- ai->dyn_size = unit_size;
- ai->unit_size = unit_size;
- ai->atom_size = unit_size;
- ai->alloc_size = unit_size;
- ai->groups[0].nr_units = 1;
- ai->groups[0].cpu_map[0] = 0;
- if (pcpu_setup_first_chunk(ai, fc) < 0)
- panic("Failed to initialize percpu areas.");
- }
- #endif /* CONFIG_SMP */
- /*
- * First and reserved chunks are initialized with temporary allocation
- * map in initdata so that they can be used before slab is online.
- * This function is called after slab is brought up and replaces those
- * with properly allocated maps.
- */
- void __init percpu_init_late(void)
- {
- struct pcpu_chunk *target_chunks[] =
- { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
- struct pcpu_chunk *chunk;
- unsigned long flags;
- int i;
- for (i = 0; (chunk = target_chunks[i]); i++) {
- int *map;
- const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
- BUILD_BUG_ON(size > PAGE_SIZE);
- map = pcpu_mem_zalloc(size);
- BUG_ON(!map);
- spin_lock_irqsave(&pcpu_lock, flags);
- memcpy(map, chunk->map, size);
- chunk->map = map;
- spin_unlock_irqrestore(&pcpu_lock, flags);
- }
- }
- /*
- * Percpu allocator is initialized early during boot when neither slab or
- * workqueue is available. Plug async management until everything is up
- * and running.
- */
- static int __init percpu_enable_async(void)
- {
- pcpu_async_enabled = true;
- return 0;
- }
- subsys_initcall(percpu_enable_async);
|