123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809 |
- /*
- * Copyright (C) 2016 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include <asm-generic/mman.h>
- #include <gtest/gtest.h>
- #include <atomic>
- #include <cstdlib>
- #include <sstream>
- #include <thread>
- #include <fmq/MessageQueue.h>
- #include <fmq/EventFlag.h>
- enum EventFlagBits : uint32_t {
- kFmqNotEmpty = 1 << 0,
- kFmqNotFull = 1 << 1,
- };
- typedef android::hardware::MessageQueue<uint8_t, android::hardware::kSynchronizedReadWrite>
- MessageQueueSync;
- typedef android::hardware::MessageQueue<uint8_t, android::hardware::kUnsynchronizedWrite>
- MessageQueueUnsync;
- class SynchronizedReadWrites : public ::testing::Test {
- protected:
- virtual void TearDown() {
- delete mQueue;
- }
- virtual void SetUp() {
- static constexpr size_t kNumElementsInQueue = 2048;
- mQueue = new (std::nothrow) MessageQueueSync(kNumElementsInQueue);
- ASSERT_NE(nullptr, mQueue);
- ASSERT_TRUE(mQueue->isValid());
- mNumMessagesMax = mQueue->getQuantumCount();
- ASSERT_EQ(kNumElementsInQueue, mNumMessagesMax);
- }
- MessageQueueSync* mQueue = nullptr;
- size_t mNumMessagesMax = 0;
- };
- class UnsynchronizedWrite : public ::testing::Test {
- protected:
- virtual void TearDown() {
- delete mQueue;
- }
- virtual void SetUp() {
- static constexpr size_t kNumElementsInQueue = 2048;
- mQueue = new (std::nothrow) MessageQueueUnsync(kNumElementsInQueue);
- ASSERT_NE(nullptr, mQueue);
- ASSERT_TRUE(mQueue->isValid());
- mNumMessagesMax = mQueue->getQuantumCount();
- ASSERT_EQ(kNumElementsInQueue, mNumMessagesMax);
- }
- MessageQueueUnsync* mQueue = nullptr;
- size_t mNumMessagesMax = 0;
- };
- class BlockingReadWrites : public ::testing::Test {
- protected:
- virtual void TearDown() {
- delete mQueue;
- }
- virtual void SetUp() {
- static constexpr size_t kNumElementsInQueue = 2048;
- mQueue = new (std::nothrow) MessageQueueSync(kNumElementsInQueue);
- ASSERT_NE(nullptr, mQueue);
- ASSERT_TRUE(mQueue->isValid());
- mNumMessagesMax = mQueue->getQuantumCount();
- ASSERT_EQ(kNumElementsInQueue, mNumMessagesMax);
- /*
- * Initialize the EventFlag word to indicate Queue is not full.
- */
- std::atomic_init(&mFw, static_cast<uint32_t>(kFmqNotFull));
- }
- MessageQueueSync* mQueue;
- std::atomic<uint32_t> mFw;
- size_t mNumMessagesMax = 0;
- };
- class QueueSizeOdd : public ::testing::Test {
- protected:
- virtual void TearDown() {
- delete mQueue;
- }
- virtual void SetUp() {
- static constexpr size_t kNumElementsInQueue = 2049;
- mQueue = new (std::nothrow) MessageQueueSync(kNumElementsInQueue,
- true /* configureEventFlagWord */);
- ASSERT_NE(nullptr, mQueue);
- ASSERT_TRUE(mQueue->isValid());
- mNumMessagesMax = mQueue->getQuantumCount();
- ASSERT_EQ(kNumElementsInQueue, mNumMessagesMax);
- auto evFlagWordPtr = mQueue->getEventFlagWord();
- ASSERT_NE(nullptr, evFlagWordPtr);
- /*
- * Initialize the EventFlag word to indicate Queue is not full.
- */
- std::atomic_init(evFlagWordPtr, static_cast<uint32_t>(kFmqNotFull));
- }
- MessageQueueSync* mQueue;
- size_t mNumMessagesMax = 0;
- };
- class BadQueueConfig: public ::testing::Test {
- };
- /*
- * Utility function to initialize data to be written to the FMQ
- */
- inline void initData(uint8_t* data, size_t count) {
- for (size_t i = 0; i < count; i++) {
- data[i] = i & 0xFF;
- }
- }
- /*
- * This thread will attempt to read and block. When wait returns
- * it checks if the kFmqNotEmpty bit is actually set.
- * If the read is succesful, it signals Wake to kFmqNotFull.
- */
- void ReaderThreadBlocking(
- android::hardware::MessageQueue<uint8_t,
- android::hardware::kSynchronizedReadWrite>* fmq,
- std::atomic<uint32_t>* fwAddr) {
- const size_t dataLen = 64;
- uint8_t data[dataLen];
- android::hardware::EventFlag* efGroup = nullptr;
- android::status_t status = android::hardware::EventFlag::createEventFlag(fwAddr, &efGroup);
- ASSERT_EQ(android::NO_ERROR, status);
- ASSERT_NE(nullptr, efGroup);
- while (true) {
- uint32_t efState = 0;
- android::status_t ret = efGroup->wait(kFmqNotEmpty,
- &efState,
- 5000000000 /* timeoutNanoSeconds */);
- /*
- * Wait should not time out here after 5s
- */
- ASSERT_NE(android::TIMED_OUT, ret);
- if ((efState & kFmqNotEmpty) && fmq->read(data, dataLen)) {
- efGroup->wake(kFmqNotFull);
- break;
- }
- }
- status = android::hardware::EventFlag::deleteEventFlag(&efGroup);
- ASSERT_EQ(android::NO_ERROR, status);
- }
- /*
- * This thread will attempt to read and block using the readBlocking() API and
- * passes in a pointer to an EventFlag object.
- */
- void ReaderThreadBlocking2(
- android::hardware::MessageQueue<uint8_t,
- android::hardware::kSynchronizedReadWrite>* fmq,
- std::atomic<uint32_t>* fwAddr) {
- const size_t dataLen = 64;
- uint8_t data[dataLen];
- android::hardware::EventFlag* efGroup = nullptr;
- android::status_t status = android::hardware::EventFlag::createEventFlag(fwAddr, &efGroup);
- ASSERT_EQ(android::NO_ERROR, status);
- ASSERT_NE(nullptr, efGroup);
- bool ret = fmq->readBlocking(data,
- dataLen,
- static_cast<uint32_t>(kFmqNotFull),
- static_cast<uint32_t>(kFmqNotEmpty),
- 5000000000 /* timeOutNanos */,
- efGroup);
- ASSERT_TRUE(ret);
- status = android::hardware::EventFlag::deleteEventFlag(&efGroup);
- ASSERT_EQ(android::NO_ERROR, status);
- }
- TEST_F(BadQueueConfig, QueueSizeTooLarge) {
- typedef android::hardware::MessageQueue<uint16_t, android::hardware::kSynchronizedReadWrite>
- MessageQueueSync16;
- size_t numElementsInQueue = SIZE_MAX / sizeof(uint16_t) + 1;
- MessageQueueSync16 * fmq = new (std::nothrow) MessageQueueSync16(numElementsInQueue);
- ASSERT_NE(nullptr, fmq);
- /*
- * Should fail due to size being too large to fit into size_t.
- */
- ASSERT_FALSE(fmq->isValid());
- }
- /*
- * Test that basic blocking works. This test uses the non-blocking read()/write()
- * APIs.
- */
- TEST_F(BlockingReadWrites, SmallInputTest1) {
- const size_t dataLen = 64;
- uint8_t data[dataLen] = {0};
- android::hardware::EventFlag* efGroup = nullptr;
- android::status_t status = android::hardware::EventFlag::createEventFlag(&mFw, &efGroup);
- ASSERT_EQ(android::NO_ERROR, status);
- ASSERT_NE(nullptr, efGroup);
- /*
- * Start a thread that will try to read and block on kFmqNotEmpty.
- */
- std::thread Reader(ReaderThreadBlocking, mQueue, &mFw);
- struct timespec waitTime = {0, 100 * 1000000};
- ASSERT_EQ(0, nanosleep(&waitTime, NULL));
- /*
- * After waiting for some time write into the FMQ
- * and call Wake on kFmqNotEmpty.
- */
- ASSERT_TRUE(mQueue->write(data, dataLen));
- status = efGroup->wake(kFmqNotEmpty);
- ASSERT_EQ(android::NO_ERROR, status);
- ASSERT_EQ(0, nanosleep(&waitTime, NULL));
- Reader.join();
- status = android::hardware::EventFlag::deleteEventFlag(&efGroup);
- ASSERT_EQ(android::NO_ERROR, status);
- }
- /*
- * Test that basic blocking works. This test uses the
- * writeBlocking()/readBlocking() APIs.
- */
- TEST_F(BlockingReadWrites, SmallInputTest2) {
- const size_t dataLen = 64;
- uint8_t data[dataLen] = {0};
- android::hardware::EventFlag* efGroup = nullptr;
- android::status_t status = android::hardware::EventFlag::createEventFlag(&mFw, &efGroup);
- ASSERT_EQ(android::NO_ERROR, status);
- ASSERT_NE(nullptr, efGroup);
- /*
- * Start a thread that will try to read and block on kFmqNotEmpty. It will
- * call wake() on kFmqNotFull when the read is successful.
- */
- std::thread Reader(ReaderThreadBlocking2, mQueue, &mFw);
- bool ret = mQueue->writeBlocking(data,
- dataLen,
- static_cast<uint32_t>(kFmqNotFull),
- static_cast<uint32_t>(kFmqNotEmpty),
- 5000000000 /* timeOutNanos */,
- efGroup);
- ASSERT_TRUE(ret);
- Reader.join();
- status = android::hardware::EventFlag::deleteEventFlag(&efGroup);
- ASSERT_EQ(android::NO_ERROR, status);
- }
- /*
- * Test that basic blocking times out as intended.
- */
- TEST_F(BlockingReadWrites, BlockingTimeOutTest) {
- android::hardware::EventFlag* efGroup = nullptr;
- android::status_t status = android::hardware::EventFlag::createEventFlag(&mFw, &efGroup);
- ASSERT_EQ(android::NO_ERROR, status);
- ASSERT_NE(nullptr, efGroup);
- /* Block on an EventFlag bit that no one will wake and time out in 1s */
- uint32_t efState = 0;
- android::status_t ret = efGroup->wait(kFmqNotEmpty,
- &efState,
- 1000000000 /* timeoutNanoSeconds */);
- /*
- * Wait should time out in a second.
- */
- EXPECT_EQ(android::TIMED_OUT, ret);
- status = android::hardware::EventFlag::deleteEventFlag(&efGroup);
- ASSERT_EQ(android::NO_ERROR, status);
- }
- /*
- * Test that odd queue sizes do not cause unaligned error
- * on access to EventFlag object.
- */
- TEST_F(QueueSizeOdd, EventFlagTest) {
- const size_t dataLen = 64;
- uint8_t data[dataLen] = {0};
- bool ret = mQueue->writeBlocking(data,
- dataLen,
- static_cast<uint32_t>(kFmqNotFull),
- static_cast<uint32_t>(kFmqNotEmpty),
- 5000000000 /* timeOutNanos */);
- ASSERT_TRUE(ret);
- }
- /*
- * Verify that a few bytes of data can be successfully written and read.
- */
- TEST_F(SynchronizedReadWrites, SmallInputTest1) {
- const size_t dataLen = 16;
- ASSERT_LE(dataLen, mNumMessagesMax);
- uint8_t data[dataLen];
- initData(data, dataLen);
- ASSERT_TRUE(mQueue->write(data, dataLen));
- uint8_t readData[dataLen] = {};
- ASSERT_TRUE(mQueue->read(readData, dataLen));
- ASSERT_EQ(0, memcmp(data, readData, dataLen));
- }
- /*
- * Verify that a few bytes of data can be successfully written and read using
- * beginRead/beginWrite/CommitRead/CommitWrite
- */
- TEST_F(SynchronizedReadWrites, SmallInputTest2) {
- const size_t dataLen = 16;
- ASSERT_LE(dataLen, mNumMessagesMax);
- uint8_t data[dataLen];
- initData(data, dataLen);
- MessageQueueSync::MemTransaction tx;
- ASSERT_TRUE(mQueue->beginWrite(dataLen, &tx));
- ASSERT_TRUE(tx.copyTo(data, 0 /* startIdx */, dataLen));
- ASSERT_TRUE(mQueue->commitWrite(dataLen));
- uint8_t readData[dataLen] = {};
- ASSERT_TRUE(mQueue->beginRead(dataLen, &tx));
- ASSERT_TRUE(tx.copyFrom(readData, 0 /* startIdx */, dataLen));
- ASSERT_TRUE(mQueue->commitRead(dataLen));
- ASSERT_EQ(0, memcmp(data, readData, dataLen));
- }
- /*
- * Verify that a few bytes of data can be successfully written and read using
- * beginRead/beginWrite/CommitRead/CommitWrite as well as getSlot().
- */
- TEST_F(SynchronizedReadWrites, SmallInputTest3) {
- const size_t dataLen = 16;
- ASSERT_LE(dataLen, mNumMessagesMax);
- uint8_t data[dataLen];
- initData(data, dataLen);
- MessageQueueSync::MemTransaction tx;
- ASSERT_TRUE(mQueue->beginWrite(dataLen, &tx));
- auto first = tx.getFirstRegion();
- auto second = tx.getSecondRegion();
- ASSERT_EQ(first.getLength() + second.getLength(), dataLen);
- for (size_t i = 0; i < dataLen; i++) {
- uint8_t* ptr = tx.getSlot(i);
- *ptr = data[i];
- }
- ASSERT_TRUE(mQueue->commitWrite(dataLen));
- uint8_t readData[dataLen] = {};
- ASSERT_TRUE(mQueue->beginRead(dataLen, &tx));
- first = tx.getFirstRegion();
- second = tx.getSecondRegion();
- ASSERT_EQ(first.getLength() + second.getLength(), dataLen);
- for (size_t i = 0; i < dataLen; i++) {
- uint8_t* ptr = tx.getSlot(i);
- readData[i] = *ptr;
- }
- ASSERT_TRUE(mQueue->commitRead(dataLen));
- ASSERT_EQ(0, memcmp(data, readData, dataLen));
- }
- /*
- * Verify that read() returns false when trying to read from an empty queue.
- */
- TEST_F(SynchronizedReadWrites, ReadWhenEmpty1) {
- ASSERT_EQ(0UL, mQueue->availableToRead());
- const size_t dataLen = 2;
- ASSERT_LE(dataLen, mNumMessagesMax);
- uint8_t readData[dataLen];
- ASSERT_FALSE(mQueue->read(readData, dataLen));
- }
- /*
- * Verify that beginRead() returns a MemTransaction object with null pointers when trying
- * to read from an empty queue.
- */
- TEST_F(SynchronizedReadWrites, ReadWhenEmpty2) {
- ASSERT_EQ(0UL, mQueue->availableToRead());
- const size_t dataLen = 2;
- ASSERT_LE(dataLen, mNumMessagesMax);
- MessageQueueSync::MemTransaction tx;
- ASSERT_FALSE(mQueue->beginRead(dataLen, &tx));
- auto first = tx.getFirstRegion();
- auto second = tx.getSecondRegion();
- ASSERT_EQ(nullptr, first.getAddress());
- ASSERT_EQ(nullptr, second.getAddress());
- }
- /*
- * Write the queue until full. Verify that another write is unsuccessful.
- * Verify that availableToWrite() returns 0 as expected.
- */
- TEST_F(SynchronizedReadWrites, WriteWhenFull1) {
- ASSERT_EQ(0UL, mQueue->availableToRead());
- std::vector<uint8_t> data(mNumMessagesMax);
- initData(&data[0], mNumMessagesMax);
- ASSERT_TRUE(mQueue->write(&data[0], mNumMessagesMax));
- ASSERT_EQ(0UL, mQueue->availableToWrite());
- ASSERT_FALSE(mQueue->write(&data[0], 1));
- std::vector<uint8_t> readData(mNumMessagesMax);
- ASSERT_TRUE(mQueue->read(&readData[0], mNumMessagesMax));
- ASSERT_EQ(data, readData);
- }
- /*
- * Write the queue until full. Verify that beginWrite() returns
- * a MemTransaction object with null base pointers.
- */
- TEST_F(SynchronizedReadWrites, WriteWhenFull2) {
- ASSERT_EQ(0UL, mQueue->availableToRead());
- std::vector<uint8_t> data(mNumMessagesMax);
- initData(&data[0], mNumMessagesMax);
- ASSERT_TRUE(mQueue->write(&data[0], mNumMessagesMax));
- ASSERT_EQ(0UL, mQueue->availableToWrite());
- MessageQueueSync::MemTransaction tx;
- ASSERT_FALSE(mQueue->beginWrite(1, &tx));
- auto first = tx.getFirstRegion();
- auto second = tx.getSecondRegion();
- ASSERT_EQ(nullptr, first.getAddress());
- ASSERT_EQ(nullptr, second.getAddress());
- }
- /*
- * Write a chunk of data equal to the queue size.
- * Verify that the write is successful and the subsequent read
- * returns the expected data.
- */
- TEST_F(SynchronizedReadWrites, LargeInputTest1) {
- std::vector<uint8_t> data(mNumMessagesMax);
- initData(&data[0], mNumMessagesMax);
- ASSERT_TRUE(mQueue->write(&data[0], mNumMessagesMax));
- std::vector<uint8_t> readData(mNumMessagesMax);
- ASSERT_TRUE(mQueue->read(&readData[0], mNumMessagesMax));
- ASSERT_EQ(data, readData);
- }
- /*
- * Attempt to write a chunk of data larger than the queue size.
- * Verify that it fails. Verify that a subsequent read fails and
- * the queue is still empty.
- */
- TEST_F(SynchronizedReadWrites, LargeInputTest2) {
- ASSERT_EQ(0UL, mQueue->availableToRead());
- const size_t dataLen = 4096;
- ASSERT_GT(dataLen, mNumMessagesMax);
- std::vector<uint8_t> data(dataLen);
- initData(&data[0], dataLen);
- ASSERT_FALSE(mQueue->write(&data[0], dataLen));
- std::vector<uint8_t> readData(mNumMessagesMax);
- ASSERT_FALSE(mQueue->read(&readData[0], mNumMessagesMax));
- ASSERT_NE(data, readData);
- ASSERT_EQ(0UL, mQueue->availableToRead());
- }
- /*
- * After the queue is full, try to write more data. Verify that
- * the attempt returns false. Verify that the attempt did not
- * affect the pre-existing data in the queue.
- */
- TEST_F(SynchronizedReadWrites, LargeInputTest3) {
- std::vector<uint8_t> data(mNumMessagesMax);
- initData(&data[0], mNumMessagesMax);
- ASSERT_TRUE(mQueue->write(&data[0], mNumMessagesMax));
- ASSERT_FALSE(mQueue->write(&data[0], 1));
- std::vector<uint8_t> readData(mNumMessagesMax);
- ASSERT_TRUE(mQueue->read(&readData[0], mNumMessagesMax));
- ASSERT_EQ(data, readData);
- }
- /*
- * Verify that beginWrite() returns a MemTransaction with
- * null base pointers when attempting to write data larger
- * than the queue size.
- */
- TEST_F(SynchronizedReadWrites, LargeInputTest4) {
- ASSERT_EQ(0UL, mQueue->availableToRead());
- const size_t dataLen = 4096;
- ASSERT_GT(dataLen, mNumMessagesMax);
- MessageQueueSync::MemTransaction tx;
- ASSERT_FALSE(mQueue->beginWrite(dataLen, &tx));
- auto first = tx.getFirstRegion();
- auto second = tx.getSecondRegion();
- ASSERT_EQ(nullptr, first.getAddress());
- ASSERT_EQ(nullptr, second.getAddress());
- }
- /*
- * Verify that multiple reads one after the other return expected data.
- */
- TEST_F(SynchronizedReadWrites, MultipleRead) {
- const size_t chunkSize = 100;
- const size_t chunkNum = 5;
- const size_t dataLen = chunkSize * chunkNum;
- ASSERT_LE(dataLen, mNumMessagesMax);
- uint8_t data[dataLen];
- initData(data, dataLen);
- ASSERT_TRUE(mQueue->write(data, dataLen));
- uint8_t readData[dataLen] = {};
- for (size_t i = 0; i < chunkNum; i++) {
- ASSERT_TRUE(mQueue->read(readData + i * chunkSize, chunkSize));
- }
- ASSERT_EQ(0, memcmp(readData, data, dataLen));
- }
- /*
- * Verify that multiple writes one after the other happens correctly.
- */
- TEST_F(SynchronizedReadWrites, MultipleWrite) {
- const int chunkSize = 100;
- const int chunkNum = 5;
- const size_t dataLen = chunkSize * chunkNum;
- ASSERT_LE(dataLen, mNumMessagesMax);
- uint8_t data[dataLen];
- initData(data, dataLen);
- for (unsigned int i = 0; i < chunkNum; i++) {
- ASSERT_TRUE(mQueue->write(data + i * chunkSize, chunkSize));
- }
- uint8_t readData[dataLen] = {};
- ASSERT_TRUE(mQueue->read(readData, dataLen));
- ASSERT_EQ(0, memcmp(readData, data, dataLen));
- }
- /*
- * Write enough messages into the FMQ to fill half of it
- * and read back the same.
- * Write mNumMessagesMax messages into the queue. This will cause a
- * wrap around. Read and verify the data.
- */
- TEST_F(SynchronizedReadWrites, ReadWriteWrapAround1) {
- size_t numMessages = mNumMessagesMax - 1;
- std::vector<uint8_t> data(mNumMessagesMax);
- std::vector<uint8_t> readData(mNumMessagesMax);
- initData(&data[0], mNumMessagesMax);
- ASSERT_TRUE(mQueue->write(&data[0], numMessages));
- ASSERT_TRUE(mQueue->read(&readData[0], numMessages));
- ASSERT_TRUE(mQueue->write(&data[0], mNumMessagesMax));
- ASSERT_TRUE(mQueue->read(&readData[0], mNumMessagesMax));
- ASSERT_EQ(data, readData);
- }
- /*
- * Use beginRead/CommitRead/beginWrite/commitWrite APIs
- * to test wrap arounds are handled correctly.
- * Write enough messages into the FMQ to fill half of it
- * and read back the same.
- * Write mNumMessagesMax messages into the queue. This will cause a
- * wrap around. Read and verify the data.
- */
- TEST_F(SynchronizedReadWrites, ReadWriteWrapAround2) {
- size_t dataLen = mNumMessagesMax - 1;
- std::vector<uint8_t> data(mNumMessagesMax);
- std::vector<uint8_t> readData(mNumMessagesMax);
- initData(&data[0], mNumMessagesMax);
- ASSERT_TRUE(mQueue->write(&data[0], dataLen));
- ASSERT_TRUE(mQueue->read(&readData[0], dataLen));
- /*
- * The next write and read will have to deal with with wrap arounds.
- */
- MessageQueueSync::MemTransaction tx;
- ASSERT_TRUE(mQueue->beginWrite(mNumMessagesMax, &tx));
- auto first = tx.getFirstRegion();
- auto second = tx.getSecondRegion();
- ASSERT_EQ(first.getLength() + second.getLength(), mNumMessagesMax);
- ASSERT_TRUE(tx.copyTo(&data[0], 0 /* startIdx */, mNumMessagesMax));
- ASSERT_TRUE(mQueue->commitWrite(mNumMessagesMax));
- ASSERT_TRUE(mQueue->beginRead(mNumMessagesMax, &tx));
- first = tx.getFirstRegion();
- second = tx.getSecondRegion();
- ASSERT_EQ(first.getLength() + second.getLength(), mNumMessagesMax);
- ASSERT_TRUE(tx.copyFrom(&readData[0], 0 /* startIdx */, mNumMessagesMax));
- ASSERT_TRUE(mQueue->commitRead(mNumMessagesMax));
- ASSERT_EQ(data, readData);
- }
- /*
- * Verify that a few bytes of data can be successfully written and read.
- */
- TEST_F(UnsynchronizedWrite, SmallInputTest1) {
- const size_t dataLen = 16;
- ASSERT_LE(dataLen, mNumMessagesMax);
- uint8_t data[dataLen];
- initData(data, dataLen);
- ASSERT_TRUE(mQueue->write(data, dataLen));
- uint8_t readData[dataLen] = {};
- ASSERT_TRUE(mQueue->read(readData, dataLen));
- ASSERT_EQ(0, memcmp(data, readData, dataLen));
- }
- /*
- * Verify that read() returns false when trying to read from an empty queue.
- */
- TEST_F(UnsynchronizedWrite, ReadWhenEmpty) {
- ASSERT_EQ(0UL, mQueue->availableToRead());
- const size_t dataLen = 2;
- ASSERT_TRUE(dataLen < mNumMessagesMax);
- uint8_t readData[dataLen];
- ASSERT_FALSE(mQueue->read(readData, dataLen));
- }
- /*
- * Write the queue when full. Verify that a subsequent writes is succesful.
- * Verify that availableToWrite() returns 0 as expected.
- */
- TEST_F(UnsynchronizedWrite, WriteWhenFull1) {
- ASSERT_EQ(0UL, mQueue->availableToRead());
- std::vector<uint8_t> data(mNumMessagesMax);
- initData(&data[0], mNumMessagesMax);
- ASSERT_TRUE(mQueue->write(&data[0], mNumMessagesMax));
- ASSERT_EQ(0UL, mQueue->availableToWrite());
- ASSERT_TRUE(mQueue->write(&data[0], 1));
- std::vector<uint8_t> readData(mNumMessagesMax);
- ASSERT_FALSE(mQueue->read(&readData[0], mNumMessagesMax));
- }
- /*
- * Write the queue when full. Verify that a subsequent writes
- * using beginRead()/commitRead() is succesful.
- * Verify that the next read fails as expected for unsynchronized flavor.
- */
- TEST_F(UnsynchronizedWrite, WriteWhenFull2) {
- ASSERT_EQ(0UL, mQueue->availableToRead());
- std::vector<uint8_t> data(mNumMessagesMax);
- ASSERT_TRUE(mQueue->write(&data[0], mNumMessagesMax));
- MessageQueueUnsync::MemTransaction tx;
- ASSERT_TRUE(mQueue->beginWrite(1, &tx));
- ASSERT_EQ(tx.getFirstRegion().getLength(), 1U);
- ASSERT_TRUE(tx.copyTo(&data[0], 0 /* startIdx */));
- ASSERT_TRUE(mQueue->commitWrite(1));
- std::vector<uint8_t> readData(mNumMessagesMax);
- ASSERT_FALSE(mQueue->read(&readData[0], mNumMessagesMax));
- }
- /*
- * Write a chunk of data equal to the queue size.
- * Verify that the write is successful and the subsequent read
- * returns the expected data.
- */
- TEST_F(UnsynchronizedWrite, LargeInputTest1) {
- std::vector<uint8_t> data(mNumMessagesMax);
- initData(&data[0], mNumMessagesMax);
- ASSERT_TRUE(mQueue->write(&data[0], mNumMessagesMax));
- std::vector<uint8_t> readData(mNumMessagesMax);
- ASSERT_TRUE(mQueue->read(&readData[0], mNumMessagesMax));
- ASSERT_EQ(data, readData);
- }
- /*
- * Attempt to write a chunk of data larger than the queue size.
- * Verify that it fails. Verify that a subsequent read fails and
- * the queue is still empty.
- */
- TEST_F(UnsynchronizedWrite, LargeInputTest2) {
- ASSERT_EQ(0UL, mQueue->availableToRead());
- const size_t dataLen = 4096;
- ASSERT_GT(dataLen, mNumMessagesMax);
- std::vector<uint8_t> data(dataLen);
- initData(&data[0], dataLen);
- ASSERT_FALSE(mQueue->write(&data[0], dataLen));
- std::vector<uint8_t> readData(mNumMessagesMax);
- ASSERT_FALSE(mQueue->read(&readData[0], mNumMessagesMax));
- ASSERT_NE(data, readData);
- ASSERT_EQ(0UL, mQueue->availableToRead());
- }
- /*
- * After the queue is full, try to write more data. Verify that
- * the attempt is succesful. Verify that the read fails
- * as expected.
- */
- TEST_F(UnsynchronizedWrite, LargeInputTest3) {
- std::vector<uint8_t> data(mNumMessagesMax);
- initData(&data[0], mNumMessagesMax);
- ASSERT_TRUE(mQueue->write(&data[0], mNumMessagesMax));
- ASSERT_TRUE(mQueue->write(&data[0], 1));
- std::vector<uint8_t> readData(mNumMessagesMax);
- ASSERT_FALSE(mQueue->read(&readData[0], mNumMessagesMax));
- }
- /*
- * Verify that multiple reads one after the other return expected data.
- */
- TEST_F(UnsynchronizedWrite, MultipleRead) {
- const size_t chunkSize = 100;
- const size_t chunkNum = 5;
- const size_t dataLen = chunkSize * chunkNum;
- ASSERT_LE(dataLen, mNumMessagesMax);
- uint8_t data[dataLen];
- initData(data, dataLen);
- ASSERT_TRUE(mQueue->write(data, dataLen));
- uint8_t readData[dataLen] = {};
- for (size_t i = 0; i < chunkNum; i++) {
- ASSERT_TRUE(mQueue->read(readData + i * chunkSize, chunkSize));
- }
- ASSERT_EQ(0, memcmp(readData, data, dataLen));
- }
- /*
- * Verify that multiple writes one after the other happens correctly.
- */
- TEST_F(UnsynchronizedWrite, MultipleWrite) {
- const size_t chunkSize = 100;
- const size_t chunkNum = 5;
- const size_t dataLen = chunkSize * chunkNum;
- ASSERT_LE(dataLen, mNumMessagesMax);
- uint8_t data[dataLen];
- initData(data, dataLen);
- for (size_t i = 0; i < chunkNum; i++) {
- ASSERT_TRUE(mQueue->write(data + i * chunkSize, chunkSize));
- }
- uint8_t readData[dataLen] = {};
- ASSERT_TRUE(mQueue->read(readData, dataLen));
- ASSERT_EQ(0, memcmp(readData, data, dataLen));
- }
- /*
- * Write enough messages into the FMQ to fill half of it
- * and read back the same.
- * Write mNumMessagesMax messages into the queue. This will cause a
- * wrap around. Read and verify the data.
- */
- TEST_F(UnsynchronizedWrite, ReadWriteWrapAround) {
- size_t numMessages = mNumMessagesMax - 1;
- std::vector<uint8_t> data(mNumMessagesMax);
- std::vector<uint8_t> readData(mNumMessagesMax);
- initData(&data[0], mNumMessagesMax);
- ASSERT_TRUE(mQueue->write(&data[0], numMessages));
- ASSERT_TRUE(mQueue->read(&readData[0], numMessages));
- ASSERT_TRUE(mQueue->write(&data[0], mNumMessagesMax));
- ASSERT_TRUE(mQueue->read(&readData[0], mNumMessagesMax));
- ASSERT_EQ(data, readData);
- }
|