123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174 |
- /*
- * Copyright (C) 2017 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #ifndef ANDROID_ML_NN_COMMON_OPERATIONS_H
- #define ANDROID_ML_NN_COMMON_OPERATIONS_H
- #include "operations/BidirectionalSequenceLSTM.h"
- #include "operations/Cast.h"
- #include "operations/EmbeddingLookup.h"
- #include "operations/ExpandDims.h"
- #include "operations/HashtableLookup.h"
- #include "operations/LSHProjection.h"
- #include "operations/LSTM.h"
- #include "operations/MaximumMinimum.h"
- #include "operations/Multinomial.h"
- #include "operations/Pow.h"
- #include "operations/QuantizedLSTM.h"
- #include "operations/RNN.h"
- #include "operations/SVDF.h"
- #include "operations/Tile.h"
- #include "operations/TopK_V2.h"
- #include <stddef.h>
- #include <cstdint>
- #include <vector>
- namespace android {
- namespace nn {
- struct Shape;
- bool floorFloat16(const _Float16* inputData, _Float16* outputData, const Shape& shape);
- bool floorFloat32(const float* inputData, float* outputData, const Shape& shape);
- bool depthwiseConvFloat16(const _Float16* inputData, const Shape& inputShape,
- const _Float16* filterData, const Shape& filterShape,
- const _Float16* biasData, const Shape& biasShape, int32_t paddingLeft,
- int32_t paddingRight, int32_t paddingTop, int32_t paddingBottom,
- int32_t strideWidth, int32_t strideHeight, int32_t dilationWidthFactor,
- int32_t dilationHeightFactor, int32_t depthMultiplier, int32_t activation,
- _Float16* outputData, const Shape& outputShape);
- bool depthwiseConvFloat32(const float* inputData, const Shape& inputShape, const float* filterData,
- const Shape& filterShape, const float* biasData, const Shape& biasShape,
- int32_t paddingLeft, int32_t paddingRight, int32_t paddingTop,
- int32_t paddingBottom, int32_t strideWidth, int32_t strideHeight,
- int32_t dilationWidthFactor, int32_t dilationHeightFactor,
- int32_t depthMultiplier, int32_t activation, float* outputData,
- const Shape& outputShape);
- bool depthwiseConvQuant8(const uint8_t* inputData, const Shape& inputShape,
- const uint8_t* filterData, const Shape& filterShape,
- const int32_t* biasData, const Shape& biasShape, int32_t paddingLeft,
- int32_t paddingRight, int32_t paddingTop, int32_t paddingBottom,
- int32_t strideWidth, int32_t strideHeight, int32_t dilationWidthFactor,
- int32_t dilationHeightFactor, int32_t depthMultiplier, int32_t activation,
- uint8_t* outputData, const Shape& outputShape);
- bool depthwiseConvQuant8PerChannel(const uint8_t* inputData, const Shape& inputShape,
- const int8_t* filterData, const Shape& filterShape,
- const float* filterScales, const int32_t* biasData,
- const Shape& biasShape, int32_t paddingLeft,
- int32_t paddingRight, int32_t paddingTop, int32_t paddingBottom,
- int32_t strideWidth, int32_t strideHeight,
- int32_t dilationWidthFactor, int32_t dilationHeightFactor,
- int32_t depthMultiplier, int32_t activation, uint8_t* outputData,
- const Shape& outputShape);
- bool localResponseNormFloat16(const _Float16* inputData, const Shape& inputShape, int32_t radius,
- float bias, float alpha, float beta, int32_t axis,
- _Float16* outputData, const Shape& outputShape);
- bool localResponseNormFloat32(const float* inputData, const Shape& inputShape, int32_t radius,
- float bias, float alpha, float beta, int32_t axis, float* outputData,
- const Shape& outputShape);
- bool copyData(const void* inputData, const Shape& inputShape, void* outputData,
- const Shape& outputShape);
- template <typename T>
- bool depthToSpaceGeneric(const T* inputData, const Shape& inputShape, int32_t blockSize,
- T* outputData, const Shape& outputShape);
- template <typename T>
- bool spaceToDepthGeneric(const T* inputData, const Shape& inputShape, int32_t blockSize,
- T* outputData, const Shape& outputShape);
- template <typename T>
- bool padGeneric(const T* inputData, const Shape& inputShape, const int32_t* paddings, T pad_value,
- T* outputData, const Shape& outputShape);
- template <typename T>
- bool batchToSpaceGeneric(const T* inputData, const Shape& inputShape, const int32_t* blockSize,
- T* outputData, const Shape& outputShape);
- template <typename T>
- bool spaceToBatchGeneric(const T* inputData, const Shape& inputShape, const int32_t* blockSize,
- const int32_t* padding, const Shape& paddingShape, T* outputData,
- const Shape& outputShape);
- bool meanFloat16(_Float16* inputData, const Shape& inputShape, const int32_t* axis,
- const Shape& axisShape, bool keepDims, _Float16* outputData,
- const Shape& outputShape);
- template <typename T, typename U>
- bool meanGeneric(T* inputData, const Shape& inputShape, const int32_t* axis, const Shape& axisShape,
- bool keepDims, T* outputData, const Shape& outputShape);
- bool stridedSliceGeneric(const uint8_t* inputData, const Shape& inputShape,
- const int32_t* beginData, const int32_t* endData,
- const int32_t* stridesData, int32_t beginMask, int32_t endMask,
- int32_t shrinkAxisMask, uint8_t* outputData, const Shape& outputShape);
- bool argMinMaxGeneric(const uint8_t* inputData, const Shape& inputShape, int32_t axis,
- bool isArgMin, uint8_t* outputData, const Shape& outputShape);
- bool splitFloat16(const _Float16* inputData, const Shape& inputShape, int32_t axis,
- const std::vector<_Float16*>* outputDataPtrs,
- const std::vector<Shape>& outputShapes);
- bool splitFloat32(const float* inputData, const Shape& inputShape, const int32_t axis,
- const std::vector<float*>* outputDataPtrs,
- const std::vector<Shape>& outputShapes);
- bool splitInt32(const int32_t* inputData, const Shape& inputShape, const int32_t axis,
- const std::vector<int32_t*>* outputDataPtrs,
- const std::vector<Shape>& outputShapes);
- bool splitQuant8(const uint8_t* inputData, const Shape& inputShape, const int32_t axis,
- const std::vector<uint8_t*>* outputDataPtrs,
- const std::vector<Shape>& outputShapes);
- bool groupedConvFloat16(const _Float16* inputData, const Shape& inputShape,
- const _Float16* filterData, const Shape& filterShape,
- const _Float16* biasData, const Shape& biasShape, int32_t numGroups,
- int32_t padding_left, int32_t padding_right, int32_t padding_top,
- int32_t padding_bottom, int32_t stride_width, int32_t stride_height,
- int32_t activation, _Float16* outputData, const Shape& outputShape);
- bool groupedConvFloat32(const float* inputData, const Shape& inputShape, const float* filterData,
- const Shape& filterShape, const float* biasData, const Shape& biasShape,
- int32_t numGroups, int32_t padding_left, int32_t padding_right,
- int32_t padding_top, int32_t padding_bottom, int32_t stride_width,
- int32_t stride_height, int32_t activation, float* outputData,
- const Shape& outputShape);
- bool groupedConvQuant8(const uint8_t* inputData, const Shape& inputShape, const uint8_t* filterData,
- const Shape& filterShape, const int32_t* biasData, const Shape& biasShape,
- int32_t numGroups, int32_t padding_left, int32_t padding_right,
- int32_t padding_top, int32_t padding_bottom, int32_t stride_width,
- int32_t stride_height, int32_t activation, uint8_t* outputData,
- const Shape& outputShape);
- bool groupedConvQuant8PerChannel(const uint8_t* inputData, const Shape& inputShape,
- const int8_t* filterData, const Shape& filterShape,
- const float* filterScales, const int32_t* biasData,
- const Shape& biasShape, int32_t padding_left,
- int32_t padding_right, int32_t padding_top, int32_t padding_bottom,
- int32_t stride_width, int32_t stride_height, int32_t numGroups,
- int32_t activation, uint8_t* outputData, const Shape& outputShape);
- bool channelShuffleGeneric(const uint8_t* inputData, const Shape& inputShape, int32_t numGroups,
- int32_t axis, uint8_t* outputData, const Shape& outputShape);
- } // namespace nn
- } // namespace android
- #endif // ANDROID_ML_NN_COMMON_OPERATIONS_H
|