123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211 |
- #!/bin/ipython
- import argparse
- import numpy as np
- import matplotlib.pyplot as plt
- import sys
- ## general defines
- linecolor = "#%x%x%x" % ( 217, 234, 211 )
- markercolor = "#%x%x%x" % ( 217/2, 234/2, 211/2 )
- # Draw pretty plot
- def doc_plot(fig, x, y):
- plt.figure(fig.number)
- fig.clear()
- lines, = plt.plot(x,y)
- lines.set_color(linecolor)
- lines.set_linewidth(4)
- lines.set_marker('o')
- lines.set_markeredgecolor(markercolor)
- lines.set_markersize(6)
- lines.set_markeredgewidth(2)
- axes = fig.get_axes()[0]
- axes.set_aspect(1)
- axes.set_ybound(0,1)
- axes.set_xbound(0,1)
- axes.grid(True)
- axes.xaxis.label.set_text(r'$P_{IN}$')
- axes.xaxis.label.set_fontsize(14)
- axes.yaxis.label.set_text(r'$P_{OUT}$')
- axes.yaxis.label.set_fontsize(14)
- # Print out interleaved coefficients for HAL3 tonemap curve tags
- def doc_coeff(x,y):
- coeffs = np.vstack((x, y)).reshape(-1,order='F')
- coeff_str = "[ "
- for val in coeffs[:-1]:
- coeff_str += "%0.4f, " % val
- coeff_str += "%0.4f ]" % coeffs[-1]
- print coeff_str
- def doc_map(fig, imgMap, index):
- plt.figure(fig.number)
- fig.clear()
- plt.imshow(imgMap - 1, interpolation='nearest')
- for x in range(0, np.size(imgMap, 1)):
- for y in range(0, np.size(imgMap, 0)):
- plt.text(x,y, imgMap[y,x,index], color='white')
- axes = fig.get_axes()[0]
- axes.set_xticks(range(0, np.size(imgMap, 1)))
- axes.set_yticks(range(0, np.size(imgMap, 0)))
- ## Check arguments
- parser = argparse.ArgumentParser(description='Draw plots for camera HAL3.x implementation spec doc')
- parser.add_argument('--save_figures', default=False, action='store_true',
- help='Save figures as pngs')
- args = parser.parse_args()
- ## Linear mapping
- x_lin = np.linspace(0,1,2)
- y_lin = x_lin
- lin_fig = plt.figure(1)
- doc_plot(lin_fig, x_lin, y_lin)
- lin_title = 'Linear tonemapping curve'
- plt.title(lin_title)
- print lin_title
- doc_coeff(x_lin, y_lin)
- if args.save_figures:
- plt.savefig('linear_tonemap.png',bbox_inches='tight')
- ## Inverse mapping
- x_inv = x_lin
- y_inv = 1 - x_lin
- inv_fig = plt.figure(2)
- doc_plot(inv_fig, x_inv, y_inv)
- inv_title = 'Inverting tonemapping curve'
- plt.title(inv_title)
- print inv_title
- doc_coeff(x_inv, y_inv)
- if args.save_figures:
- plt.savefig('inverse_tonemap.png',bbox_inches='tight')
- ## Gamma 1/2.2
- x_gamma = np.linspace(0, 1, 16);
- y_gamma = x_gamma**(1/2.2)
- gamma_fig = plt.figure(3)
- doc_plot(gamma_fig, x_gamma, y_gamma)
- gamma_title = r'$\gamma=1/2.2$ tonemapping curve'
- plt.title(gamma_title)
- print gamma_title
- doc_coeff(x_gamma, y_gamma)
- if args.save_figures:
- plt.savefig('gamma_tonemap.png',bbox_inches='tight')
- ## sRGB curve
- x_srgb = x_gamma
- y_srgb = np.where(x_srgb <= 0.0031308, x_srgb * 12.92, 1.055*x_srgb**(1/2.4)-0.055)
- srgb_fig = plt.figure(4)
- doc_plot(srgb_fig, x_srgb, y_srgb)
- srgb_title = 'sRGB tonemapping curve'
- plt.title(srgb_title)
- print srgb_title
- doc_coeff(x_srgb, y_srgb)
- if args.save_figures:
- plt.savefig('srgb_tonemap.png',bbox_inches='tight')
- ## Sample lens shading map
- shadingMapSize = np.array([3, 4])
- shadingMap1 = np.array(
- [ 1.3, 1.2, 1.15, 1.2, 1.2, 1.2, 1.15, 1.2, 1.1, 1.2, 1.2, 1.2, 1.3, 1.2, 1.3, 1.3,
- 1.2, 1.2, 1.25, 1.1, 1.1, 1.1, 1.1, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.3, 1.25, 1.2,
- 1.3, 1.2, 1.2, 1.3, 1.2, 1.15, 1.1, 1.2, 1.2, 1.1, 1.0, 1.2, 1.3, 1.15, 1.2, 1.3 ])
- redMap = shadingMap1[0::4].reshape(shadingMapSize)
- greenEMap = shadingMap1[1::4].reshape(shadingMapSize)
- greenOMap = shadingMap1[2::4].reshape(shadingMapSize)
- blueMap = shadingMap1[3::4].reshape(shadingMapSize)
- rgbMap = np.dstack( (redMap, (greenEMap + greenOMap) / 2, blueMap) )
- redMap = np.dstack( (redMap, np.zeros(shadingMapSize), np.zeros(shadingMapSize) ) )
- greenEMap = np.dstack( (np.zeros(shadingMapSize), greenEMap, np.zeros(shadingMapSize) ) )
- greenOMap = np.dstack( (np.zeros(shadingMapSize), greenOMap, np.zeros(shadingMapSize) ) )
- blueMap = np.dstack( (np.zeros(shadingMapSize), np.zeros(shadingMapSize), blueMap ) )
- redImg = plt.figure(5)
- doc_map(redImg, redMap, 0)
- plt.title('Red lens shading map')
- if args.save_figures:
- plt.savefig('red_shading.png',bbox_inches='tight')
- greenEImg = plt.figure(6)
- doc_map(greenEImg, greenEMap, 1)
- plt.title('Green (even rows) lens shading map')
- if args.save_figures:
- plt.savefig('green_e_shading.png',bbox_inches='tight')
- greenOImg = plt.figure(7)
- doc_map(greenOImg, greenOMap, 1)
- plt.title('Green (odd rows) lens shading map')
- if args.save_figures:
- plt.savefig('green_o_shading.png',bbox_inches='tight')
- blueImg = plt.figure(8)
- doc_map(blueImg, blueMap, 2)
- plt.title('Blue lens shading map')
- if args.save_figures:
- plt.savefig('blue_shading.png',bbox_inches='tight')
- rgbImg = plt.figure(9)
- rgbImg.clear()
- plt.imshow(1/rgbMap,interpolation='bicubic')
- axes = rgbImg.get_axes()[0]
- axes.set_xticks(range(0, np.size(rgbMap, 1)))
- axes.set_yticks(range(0, np.size(rgbMap, 0)))
- plt.title('Image of uniform white wall (inverse shading map)')
- if args.save_figures:
- plt.savefig('inv_shading.png',bbox_inches='tight')
- # Rec. 709
- x_rec709 = x_gamma
- y_rec709 = np.where(x_rec709 <= 0.018, x_rec709 * 4.500, 1.099*x_rec709**0.45-0.099)
- rec709_fig = plt.figure(10)
- doc_plot(rec709_fig, x_rec709, y_rec709)
- rec709_title = 'Rec. 709 tonemapping curve'
- plt.title(rec709_title)
- print rec709_title
- doc_coeff(x_rec709, y_rec709)
- if args.save_figures:
- plt.savefig('rec709_tonemap.png',bbox_inches='tight')
- # Show figures
- plt.show()
|